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A NEW CONTRIBUTION TO THE W27 REGULARITY FOR
A CLASS OF ELLIPTIC SECOND ORDER EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS

CARMELA VITANZA

In this paper we continue the study of a class of second order elliptic
equations we began in [7] improving the assumptions on the lower order terms.

Introduction.

In this paper we continue the study we began in our previous work [7] of
the Dirichlet problem for a class of elliptic second order operators with discon-
tinuous coefficients. Precisely we establish an existence and uniqueness result in

the class W7 N WO1 ' for equation

() En:a—-(x) Ou +ib- U cu=f
52 Y 90 — " ox; B

assuming that the leading terms’ coefficients g;; are in the Sarason’s space VMO
and the lower order terms’ coefficients are taken in suitable L? spaces (for pre-
cise assumptions and definitions see Section 1).

In their paper [2] Chiarenza, Frasca and Longo recently obtained the same
result in the case b; = ¢ = 0.
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In our work [7] we considered the complete equation (x) but we had at least
to assume ¢ € L" (see Theorem 2.3 in [7] for a more precise statement) in order
to achieve the uniqueness and then the existence for the Dirichlet problem for
equation (x). This in turn because of the use we did of the Alexandrov-Pucci
maximum principle (in this followmg the approach given in [2]). In the present
paper we were able to make some more natural assumptions on ¢ (see assump-
tions (2.4)). The result follows through a standard argument from a uniqueness
result (Theorem 3.1) which in turn depends on a maximum principle that is also
proved in Section 3 of this paper.

Finally we wish to express our thanks to Prof E. Fabes for his encourage-
ment and help in the proof of Theorem 3.1.

1. Some functional spaces.

We start this section by recalling the definitions of the spaces BMO and
VMO. s
We say that a locally integrable function f in R” is in the space BMO if

sup ][ |f(x) = feldx = | fll« < +o0
B B ’

where B ranges in the class of the balls in R": Here f3 is the average fB f(x)dx.
For f e BMO and r > 0 we set

(1.1) ‘ sup][ | f(x) — feldx =n(r)
B .

p=r

where B ranges in the class of the balls with radius p.
We say that a function f € BMO is in the space VMO (see [6]) if lir(r)x+ n(r)=0.
. r—
We will refer to n(r) as the VMO modulus of f.
We will need for further developments the following known property of the
space VMO (see e.g. [6], [3]). :

- Theorem 1.1. For f € BMO the followmg conditions are equivalent:
(1) fisin VMO;

(2) f isthe BMO closure of the set of the unifofmly continuous functions which
belong to BMO;

3) ;l_rf(l) If(&x =)= F®)I=0.
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By this Theorem and a known result (see [3]) we have that if f € VMO,
the usual mollifiers converge to f in the BMO norm. In other words, given any
f € VMO with VMO modulus 7r(r), it is possible to find a sequence of C*®
functions {f} LN SOnverging to f in BMO as & — 0 and with their VMO
moduli n,(r) < n(r).

Moreover, for f € LP(£2), we set

sup /E F®)Pdx = 0P (@) (1)

|Elso
ECQ

Clearly w(o) is a decreasing function in ]0, |S2|] such that li?olw(a) = 0. We
’ (2

will refer to w (o) as the AC modulus of | f]?.

2. Notations, assumptions and main result.

Let 2 be an open bounded setin R*, n > 3, and p € ]1, 4+-00[. We suppose
that the boundary of  (denoted by 92) belongs to C1'1,
We consider the elliptic operator

n
0
2.1 L = ; by —
2.1) Za, 8x,8x,+; 8x,-+c

and on the coefficients of L we make the following assumptions

[(a;j(x) e VMO N L*(R"*) i,j=1,...,n

a;i(x) =a;;(x i,j=1,...,n ae.in Q2
2.2) i(x) = aji(x) nJ
L >0:AE2 > Y a;(x)&E = ATYE? ae.inQ VEERY.
L i,j=1
(2.3) b; e L™ (2) i=1,...,n where r>n for 1< p<n,
' r=p for p>n.

24) celL’(Q) with s>n/2 for "pell,n/2],
s=p for p>n/2, ¢<0 ae.inQ.

In this paper our main result is the following theorem

(1) If E C Q is Lebesgue measurable we set | E| for its Lebesgue measure.
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Theorem 2.1. Assume (2.2), (2.3) and (2.4), f € LP(2) with p € ]1, +oo[.

Then, for the Dirichlet problem
Lu=f aeinS
(2.5) 2 l,p
ueW=P(Q)Nw, (),

exists an unique solution u. Furthermore there exists a positive constant K such
that

(2.6) llull w2 p(Q)nwl PQ) — K”f”Lp(Q)

i

Here the constant K depends an n, p, 3R, A, on the VMO moduli of a;; (i, j
1,...,n) and on the L" and L* norms respectively of the coefficients b; (i =
., n) and ¢ and their AC moduli.

For the proof of Theorem 2.1 we will need the following results which have
been proved in [7].

Theorem 2.2. Assume (2.2), (2.3) and (2.4). Let g, p € 11 + o[, ¢ < bp,
f € LP(R2). Then for any solution u of problem

Lu=f aeinQ
u e W24(Q) N Wy (),

we have
ueWrP(Q) N W, 7 (Q).

Furthermore there exists a positive constant c3 such that
(2.7) Ilu“W2»P(Q)nW01'P(Q) = (”f”LP(Q) + ”u”LP(Q)) .

Here c3 depends onn, p, 92, A, on the VMO moduli of a;j, i, j =1, . , On
the norms and AC moduli of b;, i = 1,...,n, and c.

Theorem 2.3. Assume (2.2), 2.3) and ¢ = 0; f € LP(2) with p € 11, +o0l.
Then the Dirichlet problem (2.5) has a unique solution u. Furthermore there
exists a positive constant c4 such that

(28) “u” WZ'P(Q)HWOI""(Q) = C4“f“LP(Q)'

Here c4 depends onn, p, 92, A, on the VMO moduli of a;j, i, j = 1,...,n, on
the norms and AC moduli of b;, i = 1,...,n
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3. Preliminary results. A maximum principle.

In this section we develop some tools which we will need in the proof of
Theorem 2.1. We start introducing the Green function for the operator L with
¢ = 0. More precisely for f € L?, p > n/2, we consider the Dirichlet problem

L'z = Z az](x)

z€ Wz’P(Q) N W(}'P(Q).

Zn:b—————f a.e.in

(3.1)

By Theorem 2.3 problem (3.1) has a unique solution z and the following estimate
holds

max |z] < Cllf 1l e
Q

where the constant C is of the same kind of constant ¢4 in Theorem 2.3.

Then, for all x in 2, the map f — z(x) is a bounded linear functional in L? (£2).
Therefore, by the Riesz representation theorem there exists g(x,-) € LP' (),
p' = p/(p — 1), such that

(3.2) z(x) = —/Qg(x,y)f(y)dy-

g(x, y) is the Green’s function for operator L’ in Q.

By an approximation argument of L’ with smooth operators it can be shown
that g(x, y) is positive (see e.g. [1]).

By approximation one can also prove the following two theorems (Max-
imum principle and Harnack inequality). We will give the details of the proof
only for the first of these theorems.

Maximum Principle. Assume (2.2) and (2.3). Let B a ball, B C Q; h and v
two functions in W>P(B), pE€ln/2,+ool, h > 0, where v solves the problem

| - 3%v Z”: v
Lv=)Y aj——+Y bj—=0 inB
(3.3) i; Toxiox; = ox

=h

V/sB /3B

Then we have v > 0 in B.



292 CARMELA VITANZA

Proof. We start by transforming the problem (3.3) into problem

5.3) {L (v—h)=~Lh

(v —h) € W>P(B) N W, P (B)

which has a unique solution by Théorem 2.3.
Moreover, for the solution of the problem (3.3") we have the following
estimate

(3.4) 1o = Pllyer gyowiezy < KILBN )

where the positive constant K depends only on n, p, 3€2, A, on the VMO moduli
mj ofa;; (i,,j = 1,...,n) and on the L™ norm and AC moduli of b; (I =
1,...,n). '

By (3.4) we obtain:

(3.5) lv— h||w2»p(B)nt"’(B) =

< K (1111l gy Wl sy + Ml sy)

1
n 2
where S is Sobolev’s constant and |b| = (Z b;") .
i=1
Finally by (3.5) we have’

(3.6) 190 wargsy < Killlyases)

where the positive constant K is the same kind of K.
Recalling the remarks following Theorem 1.1 we can find a sequence of smooth

functions {ag.‘) } converging to a;; in L? forall p in ]1, +-o00[ satisfying (2.2)

and with VMO rﬁoduli uniformly bounded by 7;;. Moreover we can consider
sequences { b,-(k)} , {;U‘)}keN of smooth functions converging to b; and h
k

respectively in the relevant spaces with the AC moduli of { b,-(k)} uniformly
keN

bounded by those of b; and satisfying

”bi(k) Vi=1,...,n; YkeN,

= b

ag

LI'

WZ,p S ”h”W2.p vkEN.



A NEW CONTRIBUTION TO THE W2? REGULARITY FOR. .. 293

Also let
L'® = § 0 b(k)
i;l i Bx, dx; + ; ax;
Because of the smoothness of the c}oefﬁcxents, the problem

{ L'®y® =0 inB

3.7 ® = r®

/aB /9B

admit a unique solution v and also we have, for the classical weak maximum
principle, v® > 0 (see e.g. [4]).
Furthermore by (3.6), for v® we have

(3-8) [v] Kils©]

w2 P(B) W2P(B)

and then, from (3.8) we obtain

(3.9) < Kllhllyarp VEkeEN.

A I
Recalling that p > /2, by Sobolev lemma, {v(")}kGN is also bounded in C%.
Then from (3.9) we have that there exists a subsequence of {v (")}kE which
we still call {v® }kGN weakly convergent in WP (B) and strongly convergent
to v/ in Whi(B),1 < g < p* = n_p, and, by the Ascoli-Arzela theorem
the sequence {v(")}kEN converges to v/ > 0 in CO(E). Also we observe that
{v® — ;'(k)}keN belongs to Wol,’p (B) and converges to v/ — h in WO1 'P(B).

We wish now to show that Lv' = 0. By the uniqueness for problem (3.3)
(and then (3.7)) the conclusion will follow.

Considere.g. the case n/2 < p < n.Thenfor ¢ € L (B), p’ = p/(p—1),
we have _

(3.10) f (L ®y® L’v’){l dx < /
+ Z_ [ [ @® - )z vt
k) _ (k)
+Z“v [ 12
£ e b
i=1

(3.10) implies that {L(")v(")}lﬁEN weakly converges in L? to L'v'. [

k
i,i,. — V., )4 | dx +

P 1 .

[

L*(B) ”C”Lp (B) I Lp (B)
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Harnack’s inequality. Assume (2.2), (2.3). Letv e W2P(B), p €n/2, +ool,
the solution of the problem (3.3) and let By, C B. Then

(3.11) sup v(x) < K4 inf v(x)

x€B, x€B,

where the positive constant K4 depends only on A and n.

Proof. 'We observe that Harnack’s inequality holds true (see [5]) for v®, solu-
tions to the problems (3.7), with constants independent of k and of the regularity
of the coefficients. Then using, as in the previous theorem, a compacteness ar-
gument we obtain the conclusion for v. O

We are now in position to give the following theorem

Theorem 3.1. Assume (2.2), (2.3) and (2.4). Then the solution of the Dirichlet

problem
{Lu:O a.e. in

ue WrP(Q)NW,P(Q), pell,+ool
is O in 2.
Proof. Assume thatu € W27 (Q)ﬂWo1 P(Q),1 < p < 400, solves the equation
Lu = 0 ae. in Q. Then by Theorem 2.2 we have u € W2*(Q) N W, (),

s > n/2. In particular we have u € C°(Q).

Let M = maxu > 0. To prove our result we argue by contradiction, precisely
Q
we suppose M > 0. Then they exist an xg € 2 and ry > 0 such that

ulxo) =M and u(x) >0 foranyx e B, (xp).
Let0<g 5 (x, y) = g the Green’s function for
ro
n

L 32 ) |
L = ;i + b — in B, (xg).

Then, by (3.2), we have in B, (x)
(3.12) M —u(x) = —f g(x, y) (L'(M — u)(y)) dy + vy, (x) ,
Bro(xo),

where v,,(x) solves the problem

{ L'v,y, =0 in B, (xp)

Uropp = (M — U) /3B
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Moreover, by the maximum principle we have
Vr,(x) = 0 in B, (xp).
Using now the equation
L'(M —u)=—L'u=cu in B, (xp),

(3.12) can be written as
G13) M—u(x)=— fB 8OOy + ().

Also for x = x

0 < vy, (xp) =/B ( )g(xo, yeu(y)dy.

Because c(y)u(y) < 0in B, (xo) and g(xp, y) > 0 a.e. in B,,(x9) we have

c(Y)u(y) = 0 a.e. in B, (xo) and then v, (xp) = 0. This in turn implies, by

Harnack’s inequality, v, (x) = 0 in B, (xp) and from (3.13) we obtain u = M

in B,,(xp). From this easily a contradiction follows because ¥ = 0 on 9S2.
Moreover, because —u solves the equation Lu = 0 a.e. in  we obtain

max(—u) = —minu = 0, then u is 0 in 2. O

Q Q

Proof of Theorem 2.1. By Theorem 3.1 uniqueness immediately follows. Then

it is quite standard to prove the existence by Theorem 2.2 (getting rid first of

the ||u|| term on the right hand side of (2.7)) and then using an approximation

argument as in Theorem 2.4 of [7]. O
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