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GLOBAL STRONG SOLVABILITY OF DIRICHLET
PROBLEM FOR A CLASS OF NONLINEAR
ELLIPTIC EQUATIONS IN THE PLANE

DIAN K. PALAGACHEV

Global solvability and uniqueness results are established for Dirichlet’s
problem for a class of nonlinear differential equations on a convex domain in
the plane, where the nonlinear operator is elliptic in sense of Campanato. We
prove existence by means of the Leray-Schauder fixed point theorem, using
Aleksandrov-Pucci maximum principle in order to find a priori estimate for
the solution.

1. Introduction.

In the present paper we deal with the global solvability and uniqueness of
the Dirichlet problem on two-dimensional convex domain for a class of nonlin-
ear second order differential equations represented by Carathéodory’s functions.
The principal part of the operator satisfies an ellipticity condition introduced by
S. Campanato (see [2], [3]) who proved a local existence result for this kind
of equations, assuming the measure of the domain to be sufficiently small. The
global strong solvability result was proved by Bers and Nirenberg ([1]) for uni-
formly elliptic operators under assumption that functions representing the non-
linear operator are differentiable with respect to all their variables.
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The basic tool in our investigations is the Leray-Schauder fixed point the-
orem that reduces solvability of the boundary value problem under considera-
tion to the establishment of a priori estimates for the solutions of an appropri-
ate family of problems. Using Campanato’s condition on ellipticity (see (A) be-
low) we show that the nonlinear equation can be linearized in a suitable way that
leads to the possibility to apply a semilinear variant of Aleksandrov-Pucci max-
imum principle in order to find L*° a priori bound for the solutions. On the other
hand, the linearized operator has bad regularization properties (its principal co-
efficients are L* only) that restricts us to the two-dimensional case.

The uniqueness result is a simple consequence of the Aleksandrov—Pucci
maximum principle, as well as of further structural conditions on the nonlinear
operator.

2. Setting of the problem.

Assume §2 to be C?, bounded and convex domain in the plane R?, and
let a(x, z, p, &), f(x, z, p) be real-valued functions satisfying Carathéodory'’s
condition, i.e. they are measurable in x for all (z, p, &) € R x R? x R* and
continuous in the other variables for almost all x € 2. Here R* denotes the 4-
dimensional space of real 2 x 2 matrices § = {§;; },-2, j=1 with the norm ||§|| =

1/2
(Z? j=1 3) . For a real-valued function u: 2 — R we denote by Vu and

H (u) its gradient and Hessian matrix, respectively.
To fix our ideas we aimed at the study of global solvability of the next
homogeneous Dirichlet problem for second order differential equation

(1) {a(x,u,Vu,H(u)) = f(x,u,Vu) a.e.in
u=20 on 9€2.
As usual, by strong solution of (1) we mean a twice weakly differentiable func-
tion (u € W9(Q)) satisfying equation in (1) almost everywhere in 2, and that
achieves boundary values in sense of W14(Q),i.e., u € WO1 "4(Q), with an appro-
priate ¢ > 1. Here W>9(2) denotes the usual Sobolev space equipped with the
norm || - |24 (g). The nonhomogeneous boundary value problem can be consid-
ered in the same way as below. The reason to dealing with zero boundary con-
dition is to avoid some unessential complications of technical character.

In order to prove the solvability of (1) we need some structural conditions
on the equation. The next “ellipticity” condition is introduced by S.Campanato
(see [2], [3]):

(A) There exist positive constants «, ¥ and 8, y +6 < 1, and
|TI'(§) - (a(x! 2, D, ";: + T) - a(x1 2y Dy T))l =< y”&” + 6ITI(§)l
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foraa. xeQ;VzeR; peR?; &, 1eR?*, and a(x, z, p,0) = 0.

The main step in our considerations is ensured by the fact that condition (A)
allows to rewrite the equation in (1) as an equation with linear structure, having
L principal coefficients that depend on u, Vu, H(u).

On the function f(x, z, p) we impose the next assumptions:

2) £, 2, I = fillzD) (fox) +1p17)

where fi € COR™Y), f» € L3(R), and g < 2 is an arbitrary number;
(3) —signz - f(x,z, p) < m1(x)|p| + pa(x),

with 14, and u, nonnegative L2(2) functions.
The last condition is natural in the treatment of classical solvability of qua-
silinear elliptic equations, and it ensures L a priori estimate for solutions of

(1).

We are in position now to formulate our existence result.

Theorem 1. Assume Q@ C R? to be C?, bounded and convex domain, and let
(A), 2) and (3) hold. Then the Dirichlet problem (1) possesses solution u €
W22(Q) N W, ().

Remarks. By means of Sobolev’s imbedding theorem the solution of (1) is
Holder continuous function u € C%?(Q2) for all & < 1, and therefore it attains
continuously the boundary values on 9€2.

It will be evident from the proof given below that if we impose the stronger
condition f, € L% (2) in (2) with some gy > 2 and sufficiently close to 2 (see
Theorem 3 in [3]), then the solution of (1) belongs to W29 () N WO1 Q). In
particular, u € C11-%/9(Q).

Moreover, let f, € L9%(S2) with arbitrary gy > 2. Then, using the lin-
earized equation (11) below, and a result due to G. Talenti ([10]), it follows:
ueCLA(Q) NC*(Q) for each § < 1, and for all

_ 2
0<ﬁ<min{1--E - +9) }

g0 2(y + v2(1 +6))

(see the inequality (10)).

Unicity cannot be assured for the considered problem without further hy-
potheses on the nonlinear operator. It is gossible to prove uniqueness for (1) in
the wider functional class C°(Q2) N W22 (S2) under additional structure condi-
tions on the functions a(x, z, p, §) and f(x, z, p), as shows the next assertion.
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Theorem 2. Let the function a satisfies (A), and let it be independent of 7 and
p. Assume f(x, z, p) to be nondecreasing in z for almost all x € Q, ¥ p € R?,
and

(4) lf(x’z’ p)—f(x’zv p/)l S_f3(x,Z)|p"'P/|

fora.a. xeQ,VzeR, Vp, p' €R?, where sup f3(-, z) € L*(R2) for each fixed
lzl<M

constant M. .
Then, if u,v € C°(Q) N W22(Q) solve Dirichlet’s problem (1) we have

U = v.

3. Proofs of the results.

As was mentioned above we shall study the solvability of (1) using the
Leray-Schauder fixed point theorem (Theorem 11.6 in [5]).

Without loss of generality we may assume g > 1 for the number g in (2).
Thus, if v € W!24(Q) Sobolev’s imbedding theorem implies v € C%(Q) and
therefore

(5) fx,v(x), Vo(x)) € LX)

by means of (2).
Now, for fixed o € [0, 1] and v € W12 () we consider

a(x,v,Vv, Hu)) = of(x,v, Vv) a.. in

©) {u =0 on 052.

The Dirichlet problem (6) is uniquely solvable in the space W22(2) N W, (S2)
as it was proved by S. Campanato (Theorem 3 in [3], Theorem 4.4 in [2]) and
because of the convexity of €2, (A) and (5). Moreover, the solution of (6) satisfies

(7) - HW] lof(x, v, Vv)

(64
2 = — l L2(Q)'
L*@) — 1 —(y +96) (%))

So, we have defined a mapping
% : [0,1]1 x W (Q) — W (Q)

where the image u = % (o, v) is the unique solution of (6). In such a way,
the solvability of (1) is reduced to the existence of a fixed point of the mapping
w(1,-).
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It is clear that %/ (0, v) = O for each v € W1%(Q) (a(x, z, p, 0) = 0 and
Theorem 3 in [3]), and % is a compact operator from [0, 1] x W12 () into
WL2(Q) (% (o, v) € WH2(Q) — WL (Q) compactly for each r > 1).

To prove continuity of % we get sequences v, € W% (Q), o3, € [0, 1]
converging in the corresponding topologies to v and o, respectively. Let u, =
U (on, vi) € W22(Q) N W (Q), u = U (0, v) € W2H(Q) N W A(RQ), ie.,

a(x, vy, Vup, Hup)) = op f(x, vy, Vvp) ae.in Q

and
a(x,v,Vv,Hu)) =of(x,v,Vv) a.e.in 2.

Hence

A(up —u) =A@y —u) — a(a(x, va, Vup, Hup)) — a(x, vy, Vug, HW)))
+ a (a(x, v, Vv, Hu)) — a(x, vy, Vo, H(u)))
+ a (op f(x, vp, Vup) — o f(x, v, Vv)).

Since Tr (H (up — u)) = A(up—u), condition (A) and the Young inequality lead
fo

|A@s = w)* < +e) (86 +P)IAwA —wI* +y 6 + IHws —w)?)
+ C(e, a)(]a(x, Vn, VU, H(u)) —a(x, v, Vv, H(u))l2

+ Ia;,f(x, Un, VUp) — o f(x, v, Vv)]z)

with arbitrary ¢ > 0. On the other hand u;, — u € W>2() N W,*(Q2) and
therefore

/HH(uh—u)llzde/ Ay — w)|?dx
Q Q

because of the estimate of Miranda-Talenti (see [6], [9]), and the convexity of
Q.
It follows

[ i - wiax <
Q
< C@)( [ latr, v Vo, H@) - a(x, v, Vo, HG)[ dx
Q

+/ thf(x, Vp, VUp) — o f(x, v, Vv)lz dx)
Q
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after choosing & > 0 so small that (1 + &)(y + 8)? < 1.

The right-hand side above tends to 0 as 4 — 0 since the nonlinear operators
v = a(x,v,Vv,§) and v — f(x,v, Vv) are continuous mappings from
Wl24(Q) into L2(2). This factis a simple consequence of the growth condition
(2), condition (A) that implies

la(x, z, p, §)| < ClIE]l,

and Theorem 16.11 in [4]. Therefore u;, — wu in W%2(2) (and moreover in
W12 (Q)) as h — 0 that shows continuity of the mapping % .

In order to apply Leray-Schauder’s theorem to the operator %, we must
prove the a priori estimate

® [ gy = €

for any solution u € W22(Q2) N W,"*(2) of the problem

{ alx,u,Vu, Hu)) = o f(x,u, Vu) ae.in

(9) u=20 on 0§2

where the constant C does not depend on o and u.

The first step in establishment of (8) is an a priori bound for |u|| L)
The next result shows that (A) really implies uniform ellipticity of our nonlinear
operator, and ensures us the possibility to apply Aleksandrov-Pucci maximum
principle (see [5], [8]).

Lemma. Assume a(x, z, p, §) satisfies condition (A). Then thg function & —
a(x, z, p, &) is differentiable almost everywhere in R*. If a'i(x,z, p, &) =
%(x’zvpv g); i’ J - 1, 2, then aij ELOO(Q X R X Rz X R4) and

2 2
7 1-(y+98)° .
10 Y(x,z, p,E)AiA; > —— A
(10) i,EjZIa (X, 2, P, )AiA, o Al
forall (x,z,p, &) e 2 x R x R? x R* VA eR2
Proof. Employing the evident inequality |Tr (£§)| < ﬁ“é“ it follows from (A),

y + /21 + 8)
(04

la(x,z, p, & + 1) —ax,z,p,7)| < IE,

ie., the function § — a(x,z, p, £) is Lipschitz continuous function on R*,
uniformly with respect to (x, z, p). The Rademacher theorem implies now that
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the partial derivatives 99—(3‘3—;—3—‘5—) exist for almost all £ € R*, and they are bounded
ij

. 2 ..
by )i“%&r—‘s—) Without loss of generality we may define a"/ = 1—"—(2%‘—)—8” (with
Cronecker’s 6'/) at the set in R* with measure 0, where the above derivatives do
not exist.

The ellipticity condition (10) is proved in [2] (see p.6) in the case a € cl.
We will proceed in the same manner.
For, it follows from (A)
|Tr (z) — a(a(x, z,p,6+1)—alx,zp, 5))[2 <

<y +OITI* + 8¢ + 8)ITr ()
and therefore

20Tr (t)(a(x,z, p, & + 1) —a(x,z,p, &) >
> (1= +))Tr @) — vy +dlrl*

Now, if £ € R* is a point at which there exists the differential diza, getting

T = t{Aid)2 o1, t €R\{O}, A e R? \ {0}, we have

v 2
(o2, p €+ 10D — a7, p ) =1 S QAR B P8 o,

=1 a?;-'ij

and therefore

2 aa('x’ z’ p’ s)
2at|A]? (ti,; 55, it oli ) = (1— @+ 8N

The inequality (10) follows after dividing the both sides by #?|A[? and letting
t — 0. Of course, (10) holds in the points £ € R* where the differential dea

) . . _ 2 ..
does not exists, because of our definition a"/ = 1——(2%8)—8” there. O

Returning to our problem (9) and using the already proved result, we may
rewrite the equation in the next manner:

(11) AY(x)Diju = o f (x,u, Vir)

where

1
AV (x) = /O %(x, u(x), Vi), tH ) (x)) dt € L™ ()
ij
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(recall a(x, z, p,0) = 0) and {AY (x)}i j=1 is positively definite matrix with

eigenvalues > 1—‘—%—}93 > 0. Taking into account (3), we have on the set
Qt ={xeQ:ulx) > 0}:

Cof(x,u(x), Vu(x)) > —opu1(x) | Vu(x) | —oua(x) >

2
ou ou
> — i — - —(x) — e.in QT
> o,ul(x);mgn ( ™ (x)) ) mom®  aein
and it follows from (11):

2
. 5 )
AY () Dy + opr(x) Y sign (—”(x)) 22 (%) = —opa(x) ae. in QY
=1 8x,~ Bx,-

with AV (x) € L®(R), o p1(x) sign (35 (x)) € LX(Q), oz € LX(Q).
Now, the Aleksandrov-Pucci maximum principle (z € C%(Q) N W22(R))
asserts:

(12) sup < C (o, v, 8, diam @, unr| ) szl -
To estimate u from below, we consider the function w = —u that satisfies the
equation

Aij(x)Dijw =—of(x,—w,—Vw) ae.in N

and
—signz(— f(x, —z, p)) = —sign(=2) f(x, ~z, p) < w1 (®)|p| + p2(x).
Repeating the same arguments as above we arrive at:

—infu = swpw < Clluaf , .

The last inequality combined with (12) gives us

13 sup [u} < C.
Q

Now, inequalities (2) and (13) lead to:

/ ‘Jf(x,u, Vu)lzdx <C (“f2“22 +/ |Vu|™ dx)
Q L*) Q
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whence
(14) / H@Pdx <C(1+ [vul%, ))

by means of (7).
The L% -norm of the right-hand side can L@e estimated with the help of

Gagliargo-Nirenberg estimate ([7]) and (13):

12 1/2 1/2
and applying Young’s inequality (¢ < 2), we have
IVl gy < CHH@ g < e HW, o, +C@)

with arbitrary ¢ > 0. In other words, (14) has the form
[ <e [ 1P+ CE),
Q Q

and choosing ¢ to be sufficiently small we arrive at the desired estimate (8).
Therefore, by virtue of the Leray-Schauder theorem the operator % (1, +) has a
fixed point, i.e., u = % (1,u) € W22(Q) N Wy'3(R) is a solution of (1), that
proves Theorem 1. O

Proof of Theorem 2. Let us introduce the function w = u — v € C%(Q) N
W22 (S2). Then »

(15) alx, Hw)) —a(x, Hw)) — f(x,u, Vu) + f(x,u, Vv)
— f(x,u,Vv) + f(x,v,Vv) =0 a.e.in Q.

Since f(x, z, p) is nondecreasing in z, we have
—fx,u, V) + f(x,v,Vv) <0 a.e.in Q7

where QF = (x€Q: wx) = u(x) — v(x) > 0}.
On the other hand

2

a(x, Hw) —a(x, Hw)) = Y _ a" (x)Dyw

i,j=1
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with . :

a’(x) = / 38: (x tH(w)(x) + H(v)(x)) dt e L™ ()
0 ij

according to the above proved Lemma.
Moreover, condition (4) ensures Lipschitzity of f with respect to p, and
therefore :

| ,
fx,u, Vo) = fx,u, Vu) =Y b (x) Diw
) _ i=1
where
: Yaf )
b'(x) = —-/ o — (x, u(x) tVw(x) + Vu(x)) dt € LX(R).
0

It follows from (15):
Z a’ (x)Dyjw + Zb‘ (x)Djw >0  ae.in QT
ij=

with @'/ € L®(Q), b € LZ(Q) Applying the Aleksandrov-Pucci maximum
principle again, we arrive at the esUmate

supw < sup wt

Q+ Gy
that shows | | .
s o w(x) <supw <0 on,
since supyo+ wT = 0 (we recall w = 0 on 9Q). _Repeating the same arguments

with —w instead of w, we obtain w > O on 2, that completes the proof of
Theorem 2. 0
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