A NEW APPROACH TO SOME TRACE THEOREMS

MARIA ALESSANDRA RAGUSA

We prove a Sobolev-Adams weighted imbedding using an idea of E.M. Stein.

1. Introduction.

In the work [1] D.R. Adams proved that the necessary and sufficient condition for the continuous imbedding of $L^p(\mathbb{R}^n; dx)$ into $L^r(\mathbb{R}^n; d\mu)$, $1 for the Riesz potential operator <math>(I_{\alpha} f)(x) = \int_{\mathbb{R}^n} |x - y|^{\alpha - n} f(y) dy$, $0 < \alpha < n$ is the boundedness of

$$\mathscr{M}(x) = \sup_{\varrho > 0} \varrho^{-s} \mu \big(B_{\varrho}(x) \big),\,$$

where $s = r\left(\frac{n}{p} - \alpha\right)$ and $B_{\varrho}(x) = \{y \in \mathbb{R}^n : |x - y| < \varrho\}$ (or in the other words that μ belongs to a classical Morrey space $L^{1,\delta}$). The problem of finding a complete caracterization of those measures μ such that I_{α} is bounded from $L^p(\mathbb{R}^n; dx)$ to $L^r(\mathbb{R}^n; d\mu)$ (including the difficult case p = r) was settled many years later by Kerman and Sawyer in [2].

One of their conditions is

$$\left(\int_{\mathbb{R}^n} \left(\int_B \frac{d\mu}{|x-y|^{n-\alpha}}\right)^{p'} dy\right)^{\frac{1}{p'}} \leq C_0 \left(\mu(B)\right)^{\frac{1}{r'}}, \quad \frac{1}{p} + \frac{1}{p'} = 1, \ \frac{1}{r} + \frac{1}{r'} = 1.$$

Entrato in Redazione il 21 aprile 1994.

Lavoro eseguito con contributo finanziario del M.U.R.S.T. (60%).

In this paper we prove directly (Theorem 1) that the Kerman-Sawyer assumption above implies the Adams hypotesis; the complete equivalence, when r > p, is proved in Remark 2. Also in Theorem 1 we give a simple proof that the Kerman-Sawyer assumption implies the weak type (p, r) for the operator I_{α} . The idea of the proof has been suggested to us by Stein's proof of Sobolev imbedding. As a tool we use (Lemma 1) a generalization of Schur's lemma [5] which we feel is of some interest in itself.

2. Preliminaries.

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measures spaces and $p, q \in [1, \infty]$, we recall that an operator T defined on $L^p(\mu)$ to the space of measurable functions on Y is said to be of strong type (p, q) if there exists a constant C such that

$$||T(f)||_q \le C||f||_p (^1).$$

Similarly an operator T is said to be of weak type (p, r), $p \in [1, \infty]$ and $r \in [1, \infty[$, if there exists a constant C such that for any $\tau > 0$

$$\nu\big(\{x: (Tf)(x) > \tau\}\big) \leq C\left(\frac{\|f\|_p}{\tau}\right)^r$$

where $\nu(\{x: (Tf)(x) > \tau\})$ is the "distribution function" of Tf. We also set $\lambda_f(\tau) \equiv \mu(\{x: f(x) > \tau\})$ and recall that $L_w^r(\mu)$, $1 \le r < \infty$, is the space of measurable functions for which "the weak norm"

$$[f]_r \equiv \left(\sup_{\tau>0} \tau^r \mu \left(\{x : f(x) > \tau\} \right) \right)^{\frac{1}{r}} < \infty.$$

If $0 < \lambda < n$ and $f \in L^1_{loc}(\mathbb{R}^n)$ we set

$$||f||_{1,\lambda} = \sup_{\varrho > 0, \ x \in \mathbb{R}^n} \frac{1}{\varrho^{\lambda}} \int_{B_{\varrho}(x)} |f(y)| \, dy.$$

The Morrey space $L^{1,\lambda} = L^{1,\lambda}(\mathbb{R}^n)$ is the subset of $L^1_{loc}(\mathbb{R}^n)$ for which $||f||_{1,\lambda}$ is finite.

⁽¹⁾ We denote with $\|\cdot\|_r$ the usual norm in $L^r(\mu)$ space.

3. Results.

Lemma 1. Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces and t > 1. Let K be a real measurable non negative function on $X \times Y$ such that, for some M_0 and M_1 , we have

$$\left(\int_{Y} \left(\int_{X} K(x, y) d\mu(x)\right)^{t} d\nu(y)\right)^{\frac{1}{t}} \leq M_{0} \quad \text{if} \quad 1 < t < \infty,$$

$$\int_{X} K(x, y) d\mu(x) \leq M_{0} \quad \text{for a.e. } y \in Y \quad \text{if} \quad t = \infty,$$

$$\int_{Y} K(x, y) d\nu(y) \leq M_{1} \quad \text{for a.e. } x \in X.$$

If $1 and <math>f \in L^p(v)$ the integral

$$Tf(x) = \int_{Y} K(x, y) f(y) d\nu(y)$$

converges absolutely for a.e. $x \in X$. Moreover exists a constant C_p independent of K such that

$$||Tf||_s \le C_p ||f||_p$$
 for $s = p\left(1 - \frac{1}{t}\right)$

and $C_p = M_0^{\frac{1}{s}} M_1^{\frac{1}{s'}}$, $(s' = \frac{s}{s-1})$. Hence the operator T thus defined is of the strong type (p, s).

Proof. If $1 < t < \infty$ we have

$$\int_{X} \left(\left| \int_{Y} K(x, y) f(y) d\nu(y) \right| \right)^{s} d\mu(x) \leq
\leq \int_{X} \left(\int_{Y} \left(K(x, y) \right)^{\frac{1}{s'}} \left(K(x, y) \right)^{\frac{1}{s}} |f(y)| d\nu(y) \right)^{s} d\mu(x) \leq
\leq M_{1}^{\frac{s}{s'}} \int_{X} \left(\int_{Y} K(x, y) |f(y)|^{s} d\nu(y) \right) d\mu(x) =
= M_{1}^{\frac{s}{s'}} \int_{Y} \left(\int_{X} K(x, y) |f(y)|^{s} d\mu(x) \right) d\nu(y) \leq M_{1}^{\frac{s}{s'}} M_{0} \|f\|_{p}^{s}.$$

We observe that in the particular case $t = \infty$ this is Schur's lemma (see [5]).

Theorem 1. Let μ be a σ -finite measure in \mathbb{R}^n , $0 < \alpha < n$, $1 and <math>p \leq r < \infty$. Suppose that there exists a constant C_0 such that for any ball $B \subset \mathbb{R}^n$

$$\left(\int_{\mathbb{R}^n} \left(\int_B \frac{d\mu(x)}{|x-y|^{n-\alpha}}\right)^{p'} dy\right)^{\frac{1}{p'}} \le C_0 \left(\mu(B)\right)^{\frac{1}{p'}}$$

where $p' = \frac{p}{p-1}$ and $r' = \frac{r}{r-1}$. Then there exists a constant \widetilde{C}_0 such that

(2)
$$\left(\mu(\{x \in \mathbb{R}^n : |x - y| < A^{\frac{1}{\alpha - n}}\}) \right)^{\frac{1}{r}} \leq \widetilde{C}_0 A^{-1 + \frac{n}{p'(n - \alpha)}}, \ \forall A > 0.$$

Moreover the Riesz potential

$$(Tf)(x) = (I_{\alpha}f)(x) \equiv \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n - \alpha}} \, dy$$

maps L^p into $L^r_w(\mu)$ and

$$[I_{\alpha}f]_r \leq C \|f\|_p,$$

where C is a constant independent on f.

Proof. From (1) we obtain

$$\left(\int_{B}\left(\int_{B}\frac{d\mu(x)}{|x-y|^{n-\alpha}}\right)^{p'}dy\right)^{\frac{1}{p'}}\leq C_{0}\left(\mu(B)\right)^{\frac{1}{p'}},$$

for all balls B. If ϱ is the radius of B, we have $|x-y| < 2\varrho$. Then we have

$$(2\varrho)^{\alpha-n}\mu(B)|B|^{\frac{1}{p'}} \leq C_0(\mu(B))^{\frac{1}{r'}}$$

and finally

$$\omega_n^{\frac{1}{p'}} 2^{-\frac{n}{p'}} (2\varrho)^{\alpha-n+\frac{n}{p'}} (\mu(B))^{1-\frac{1}{r'}} \le C_0$$

where ω_n is the volume of the unit ball. From the previous estimates we have

$$(\mu(B))^{\frac{1}{r}}(2\varrho)^{\alpha-n+\frac{n}{p'}} \leq 2^{\frac{n}{p'}}C_0\omega_n^{-\frac{1}{p'}}.$$

Let $\varrho = \frac{A^{\frac{1}{\alpha - n}}}{2}$, A > 0 we obtain

$$\left(\mu(B)\right)^{\frac{1}{r}} \leq \widetilde{C}_0 A^{-1+\frac{n}{p'(n-\alpha)}},$$

where $\widetilde{C}_0 = 2^{\frac{n}{p'}} C_0 \omega_n^{-\frac{n}{p'}}$.

Following the idea of Stein's proof of Sobolev imbedding theorem (see [6], pg.120) let T_1 and T_2 be the integral operators with kernels K_1 and K_2

$$K_1(x, y) \equiv \left(\frac{1}{|x-y|^{n-\alpha}} - A\right) \chi_E,$$

where χ_E is the characteristic function of the set $E=\{(x,y)\in\mathbb{R}^n\times\mathbb{R}^n:|x-y|< A^{\frac{1}{\alpha-n}}\}$, and

$$K_2(x, y) \equiv \frac{1}{|x - y|^{n-\alpha}} - K_1(x, y).$$

By Hölder's inequality

$$||T_2 f||_{\infty} \le C_1 A^{\frac{\left(p' - \frac{n}{n-\alpha}\right)}{p'}} ||f||_p$$

where $C_1 = C_1(n, \alpha, p)$.

Also, given $0 < \tau < \infty$, we choose $A = \left(C_1^{-1} \| f \|_p^{-1} \frac{\tau}{2}\right)^{\frac{p'}{\left(p' - \frac{n}{n - \alpha}\right)}}$, then from Lemma 1 with t = p' and $M_0 = C_0(\mu(B))^{\frac{1}{p'}}$, $B = \{x \in \mathbb{R}^n : |x - y| < A^{\frac{1}{\alpha - n}}\}$

$$\begin{split} \lambda_{T_{1}f}(\frac{\tau}{2}) &\leq \frac{2}{\tau} \|T_{1}f\|_{1} \leq \frac{2}{\tau} M_{0} \|f\|_{p} = \frac{2}{\tau} C_{0} (\mu(B))^{\frac{1}{r'}} \|f\|_{p} \leq \\ &\leq 2 C_{0} \|f\|_{p} \tau^{-1} \Big(\widetilde{C}_{0} A^{-1 + \frac{n}{p'(n-\alpha)}} \Big)^{\frac{r}{r'}} = \\ &= 2^{1 + \frac{pn}{p'r'}} \omega_{n}^{-\frac{nr}{p'r'}} C_{0}^{r} \|f\|_{p} \tau^{-1} \Bigg[\left(C_{1}^{-1} \|f\|_{p}^{-1} \frac{\tau}{2} \right)^{\frac{p'}{p' - \frac{n}{n-\alpha}}} \Bigg]^{-\frac{r}{r'} + \frac{rn}{r'p'(n-\alpha)}} = \\ &= \left[2^{1 + \frac{pn}{p'r'}} \omega_{n}^{-\frac{nr}{p'r'}} C_{0}^{r} \left(\frac{1}{2C_{1}} \right)^{-\frac{r}{r'}} \right] \tau^{-1 - \frac{r}{r'}} \|f\|_{p}^{r} = C \tau^{-r} \|f\|_{p}^{r} \end{split}$$

where we used (2) to estimate $\mu(B)$.

It follows

$$\lambda_{T_f}(\tau) \leq \lambda_{T_1 f}(\frac{\tau}{2}) + \lambda_{T_2 f}(\frac{\tau}{2}) \leq C \tau^{-r} ||f||_p^r$$

i.e.

$$[I_{\alpha}f]_r \leq C \|f\|_p. \qquad \Box$$

Remark 1. Let $\mu \in L^{1,\lambda}(\mathbb{R}^n)$ with $0 < \alpha < n$, $0 \le \lambda < n - \alpha$, $\frac{n-\lambda}{\alpha} and <math>r = \frac{p\lambda}{n-\alpha p}$. Then it exists a constant C_0' such that for the ball $B = \{x \in \mathbb{R}^n : |x-y| < \varrho\}$, where $y \in \mathbb{R}^n$ and $\varrho > 0$, we have

$$\left(\int_{\mathbb{R}^n} \left(\int_B \frac{d\mu(x)}{|x-y|^{n-\alpha}}\right)^{p'} dy\right)^{\frac{1}{p'}} \le C_0' \left(\mu(B)\right)^{\frac{1}{r'}}$$

where $C'_0 = C'_0(n, p, \alpha, \lambda, \|\mu\|_{1,\lambda})$.

Proof. Set, for any $y \in \mathbb{R}^n$ and $\varrho > 0$, $I'_{\alpha}\mu = I_{\alpha}(\mu \chi_{B(y,\varrho)})$ from [1] $I'_{\alpha}\mu \in L_w^{\frac{n-\lambda}{n-\lambda-\alpha}}$ and

$$[I'_{\alpha}\mu]_{\frac{n-\lambda}{n-\lambda-\alpha}} \leq C'_1(n,\alpha,\lambda) \|\mu\|_{1,\lambda}^{\frac{\alpha}{n-\lambda}} \mu(B)^{\frac{n-\lambda-\alpha}{n-\lambda}}.$$

Because $\mu(B) < +\infty$ we also have $I'_{\alpha}\mu \in L^{\frac{n}{n-\alpha}}_{w}$ and

$$[I'_{\alpha}\mu]_{\frac{n}{n-\alpha}} \leq C'_{2}(n,\alpha)\,\mu(B)$$

(see [6], pg. 120). Then for all $p \in \left] \frac{n-\lambda}{\alpha}, \frac{n}{\alpha} \right[$ we have

$$\|I'_{\alpha}\mu\|_{p'} \leq \left[I'_{\alpha}\mu\right]^{\vartheta}_{\frac{n-\lambda}{n-\lambda-\alpha}} \left[I'_{\alpha}\mu\right]^{1-\vartheta}_{\frac{n}{n-\alpha}}$$

where ϑ is such that

$$\frac{1}{p'} = \frac{1 - \vartheta}{\frac{n}{n - \alpha}} + \frac{\vartheta}{\frac{n - \lambda}{n - \lambda - \alpha}}$$

(see e.g. [4], pg.236) i.e.

$$\vartheta = \left(\frac{n-\lambda}{\lambda}\right) \left(\frac{n-\alpha p}{\alpha p}\right).$$

Then

$$\begin{split} \|I_{\alpha}'\mu\|_{p'} &\leq \left(C_1'(n,\alpha,\lambda)\|\mu\|_{1,\lambda}^{\frac{\alpha}{n-\lambda}} \left(\mu(B)\right)^{1-\frac{\alpha}{n-\lambda}}\right)^{\vartheta} \left(C_2'(n,\alpha)\mu(B)\right)^{1-\vartheta} = \\ &= C_0' \left(\mu(B)\right)^{\frac{1}{p'}}. \quad \Box \end{split}$$

Corollary. Let α , μ , p, r be as in the previous remark, then $I_{\alpha}f$ is strong type (p,r).

Proof. Observing that if p_1 , p_2 are two real numbers such that $1 < p_1 < p < p_2$ we obtain from Remark 1 and Theorem 1 that I_{α} is weak type (p_1, r_1) and (p_2, r_2) , with $r_1 = \frac{\lambda}{\frac{n}{p_1} - \alpha} < r < r_2 = \frac{\lambda}{\frac{n}{p_2} - \alpha}$ so it follows from Marcinkiewicz theorem that $I_{\alpha}f$ is strong type (p, r). More precisely if $[I_{\alpha}f]_{r_i} \leq C_i \|f\|_{p_i}$ if i = 1, 2, then $\|I_{\alpha}f\|_r \leq C\|f\|_p$ where C depends only on p_i, r_i, C_i in addition to p. \square

Remark 2. Let α , λ , p, r as in Remark 1. The condition (1) of Theorem 1 is equivalent to the strong type (p, r) for $I_{\alpha}(f)$.

Proof. We observe that from the hypoteses (1) of Theorem 1 it follows $\mu \in L^{1,\lambda}$, $\lambda = r(\frac{n}{p} - \alpha)$. In fact (1) implies (2) and then

$$\mu\{x \in \mathbb{R}^n : |x - y| < A^{\frac{1}{n-\alpha}}\} \le \widetilde{C}_0^r \left(A^{\frac{1}{\alpha-n}}\right)^{(\alpha-n)(-r + \frac{nr}{p'(n-\alpha)})}$$

where

$$(\alpha - n)\left(-r + \frac{nr}{p'(n-\alpha)}\right) = r(n-\alpha) - \frac{nr}{p'} =$$

$$= r\left(n - \alpha - n\left(1 - \frac{1}{p}\right)\right) = r\left(\frac{n}{p-\alpha}\right).$$

From this fact and the Remark 1 we have that (1) is equivalent to $\mu \in L^{1,\lambda}$, $\lambda = r(\frac{n}{p} - \alpha)$. But from Adams theorem (see e.g. [3] pg. 52), $\mu \in L^{1,\lambda}$, $\lambda = r(\frac{n}{p} - \alpha)$ is equivalent to the strong type (p,r) for $I_{\alpha}(f)$, then (1) is equivalent to be $I_{\alpha}(f)$ strong type (p,r).

REFERENCES

- [1] D.R. Adams, Traces of potentials arising from translation invariant operator, Ann. Sc. Norm. Sup. Pisa, 25 (1971), pp. 203–217.
- [2] R. Kerman E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier, Grenoble, 36 (4) (1986), pp. 207-228.
- [3] V.G. Maz'ja, Sobolev Spaces, Springer-Verlag, Berlin Heidelberg, 1985.
- [4] G.O. Okikiolu, Aspects of The Theory of Bounded Integrals Operators in L^p Spaces, Academic Press, London, 1971.
- [5] J. Schur, Bemerkung Zur Theorie Der Beschränkten Bilinearformen Mit Unendlich Vielen Veränderlichen, J. Reine Angew. Math., 140 (1911), pp. 1–28.
- [6] E.M. Stein, Singular Integrals and Differential Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.

Dipartimento di Matematica, Università di Catania, Viale Andrea Doria 6, 95125 Catania (Italy)