DIOPHANTINE APPROXIMATIONS AND CONVERGENCE OF SERIES IN BANACH SPACES

GIOVANNI FIORITO - ROSARIO MUSMECI - MARIO STRANO

In this paper we give a new proof of a known diophantine approximation result, then we apply this to prove convergence of a class of series in a Banach space, whose terms are defined recursively.

Introduction.

Let \mathscr{F} be the class of functions $f:[0,+\infty[\longrightarrow [0,1]]]$ and \mathscr{F}_T the subset of \mathscr{F} of the periodical functions of period T. Let \mathscr{B} be a real Banach space. $\forall \lambda \in \mathscr{B}$ and $\forall \varphi \in \mathscr{F}$ we denote by \sum_{λ}^{φ} the series (in \mathscr{B}) whose terms are defined recursively by

$$\begin{cases} a_1 = \lambda \\ a_{n+1} = \varphi(n) a_n & \forall n \in \mathbb{N}. \end{cases}$$

As it is easy to prove the Kronecker's theorem (see, for example, [4], p. 373) implies that, given $a, b \in \mathbb{R}^+$ ($\frac{a}{b} \notin \mathbb{Q}$), $c \in \mathbb{R}$, then $\forall \varepsilon > 0$ there exist two sequences $\{h_n\}$ and $\{k_n\}$ of integers such that

$$|h_n a - k_n b + c|^{\epsilon} < \varepsilon.$$

An interesting property of the sequences $\{h_n\}$ and $\{k_n\}$ is that they have bounded gap (i.e. there exists $p \in \mathbb{N}$ such that $h_{n+1} - h_n \leq p$, $k_{n+1} - k_n \leq p$,

Entrato in Redazione il 7 giugno 1994.

 $\forall n \in \mathbb{N}$). This is equivalent to say that the set $\mathscr{A} = \{(h_n, k_n)\}$ is syndetic (see [3] Theorem 1.15 and Lemma 1.25). In the first section we give a new simple proof of this property. In the second section we apply this result to prove the convergence of the series \sum_{λ}^{φ} . In doing this we also utilize a general convergence theorem that we have proved to hold in \mathscr{B} (Theorem 2.1). Other results complete the section. At the end some examples are given to explain the theory.

1. Diophantine approximation.

We begin proving the following preliminary result

Lemma 1.1. Let $a, b \in \mathbb{R}^+$, a > b, $c \in \mathbb{R}$. Furthermore let $h, k \in \mathbb{N}$ such that |ha - kb + c| < a - b. Then there exists $\bar{h} \in \mathbb{N}$, depending only on a and b, such that:

1) if
$$ha - kb + c > 0$$
 then $|(h + \bar{h} - 1)a - (k + \bar{h})b + c| < a - b$;

2) if
$$ha - kb + c \le 0$$
 then $|(h + \bar{h})a - (k + \bar{h} + 1)b + c| < a - b$.

Proof. Let \bar{h} be the lowest natural number such that $\bar{h}(a-b) \geq b$. From this it follows

(1)
$$\bar{h}(a-b) = b + \gamma'$$
 with $0 \le \gamma' < a - b$.

Now we put

$$(2) ha - kb + c = \gamma$$

and distinguish two cases.

 1° case: $\gamma > 0$. From (1) and (2) we have

$$(h+\bar{h})a - (k+\bar{h})b + c = b + \gamma + \gamma'$$

from which

$$b < (h + \bar{h})a - (k + \bar{h})b + c < a + a - b$$

hence

$$-(a-b) < (h+\bar{h}-1)a - (k+\bar{h})b + c < a-b,$$

and therefore the thesis.

 2° case: $\gamma \leq 0$. From (1) and (2) we have again

$$(h+\bar{h})a - (k+\bar{h})b + c = b + \gamma + \gamma'$$

from which

$$b + \gamma \le (h + \bar{h})a - (k + \bar{h})b + c \le b + \gamma'$$

hence

$$-(a-b) < \gamma \le (h+\bar{h})a - (k+\bar{h}+1)b + c \le \gamma' < a-b$$

and this completes the proof. \Box

Theorem 1.1. Let $a, b \in \mathbb{R}^+$ ($\frac{a}{b} \notin \mathbb{Q}$), $c \in \mathbb{R}$. Then $\forall \varepsilon > 0$ there exist a natural number p, depending only on a, b, ε , and two sequences of natural numbers $\{h_n\}$ and $\{k_n\}$, depending only on a, b, c, ε , one not decreasing and the other increasing such that $\forall n \in \mathbb{N}$ it results

$$h_{n+1}-h_n\leq p, \qquad k_{n+1}-k_n\leq p$$

and

$$|h_n a - k_n b + c| < \varepsilon.$$

Proof. For the Kronecker's theorem there exist $h, k \in \mathbb{N}$, depending only on a, b, ε , such that $0 < |ha - kb| < \varepsilon$. Let us suppose at first ha - kb > 0. Again for the Kronecker's theorem there exist $h^*, k^* \in \mathbb{N}$, depending only on a, b, c, ε , such that

$$|h^*(ha) - k^*(kb) + c| < ha - kb$$
.

By virtue of the Lemma 1.1 there exists $\bar{h} \in \mathbb{N}$ depending only on ha, kb (and hence only on a, b, ε) such that, setting

$$h_1' = h^*, \qquad k_1' = k^*$$

and $\forall n \in \mathbb{N}$

$$h'_{n+1} = \begin{cases} h'_n + \bar{h} - 1 & \text{if} \quad h'_n(ha) - k'_n(kb) + c > 0 \\ h'_n + \bar{h} & \text{if} \quad h'_n(ha) - k'_n(kb) + c \le 0 \end{cases}$$

$$k'_{n+1} = \begin{cases} k'_n + \bar{h} & \text{if } h'_n(ha) - k'_n(kb) + c > 0\\ k'_n + \bar{h} + 1 & \text{if } h'_n(ha) - k'_n(kb) + c \le 0 \end{cases}$$

it results (proceeding inductively)

$$|h'_n(ha) - k'_n(kb) + c| < ha - kb < \varepsilon \quad \forall n \in \mathbb{N}.$$

At this point, setting

$$p = \max(h\bar{h}, k(\bar{h} + 1))$$

and

$$h_n = h'_n h, \qquad k_n = k'_n k \qquad \forall n \in \mathbb{N},$$

we obtain two sequences $\{h_n\}$ and $\{k_n\}$, the first not decreasing and the second increasing, that verify all the conditions of the thesis.

If, otherwise, it is ha - kb < 0, for the Kronecker's theorem again, there exist $h^*, k^* \in \mathbb{N}$, depending only on a, b, c, ε , such that

$$|k^*(kb) - h^*(ha) - c| < kb - ha$$
.

Proceeding, then, as in the previous case we found the sequences of natural numbers $\{k_n\}$ and $\{h_n\}$, the first not decreasing and the second increasing, and a natural number p, such that $\forall n \in \mathbb{N}$

$$k_{n+1}-k_n\leq p, \qquad h_{n+1}-h_n\leq p$$

and

$$|k_n b - h_n a - c| < \varepsilon.$$

And from this the thesis follows easily.

Remark 1.1. The sequences $\{h_n\}$ and $\{k_n\}$ of the previous theorem are both divergent to $+\infty$.

2. Convergence of series in Banach space.

Lemma 2.1. Let $\sum_{n=1}^{\infty} a_n$ be a series of non-negative real numbers such that the following properties hold:

- 1) the sequence $\{a_n\}$ is not increasing;
- 2) there exist a natural number p and a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that

$$a_{n_k} \in \{a_{(k-1)p+1}, a_{(k-1)p+2}, \ldots, a_{kp}\} \quad \forall k \in \mathbb{N},$$

and the series $\sum_{k=1}^{\infty} a_{n_k}$ is convergent.

Then the series $\sum_{n=1}^{\infty} a_n$ is convergent.

Proof. Let us denote by $\{S_n\}$ the sequence of partial sums of the series $\sum_{n=1}^{\infty} a_n$ and let us consider the subsequence $\{S_{kp}\}$ of $\{S_n\}$. Then we have:

$$S_p \leq pa_1$$

and

$$S_{kp} \le pa_1 + pa_{n_1} + pa_{n_2} + \dots + pa_{n_{k-1}} =$$

$$= pa_1 + p(a_{n_1} + a_{n_2} + \dots + a_{n_{k-1}}), \quad \forall k \ge 2$$

from which it follows, by virtue of the convergence of the series $\sum_{n=1}^{\infty} a_{n_k}$, that the sequence $\{S_{kp}\}$ is convergent. And this implies that the sequence $\{S_n\}$ is convergent, and therefore the thesis.

Theorem 2.1. Let $\sum_{n=1}^{\infty} a_n$ be a series in \mathcal{B} such that the following properties hold:

- 1) the sequence $\{||a_n||\}$ is not increasing;
- 2) there exist a natural number p and a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that

$$a_{n_k} \in \{a_{(k-1)p+1}, a_{(k-1)p+2}, \ldots, a_{kp}\} \quad \forall k \in \mathbb{N},$$

and the series $\sum_{k=1}^{\infty} ||a_{n_k}||$ is convergent.

Then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Proof. It follows immediately from the previous lemma. \Box

Theorem 2.2. Let $\varphi(x) \in \mathcal{F}$; furthermore let $p \in \mathbb{N}$, $q \in [0, 1[$ and $\{h_n\}$ a sequence of natural numbers not decreasing and divergent to $+\infty$ such that

$$h_{n+1} - h_n \leq p, \qquad \varphi(h_n) \leq q \quad \forall n \in \mathbb{N}.$$

Then the series \sum_{λ}^{φ} is absolutely convergent.

Proof. Being

$$a_{n+1} = \lambda \varphi(1)\varphi(2) \dots \varphi(n) \quad \forall n \in \mathbb{N},$$

it results

$$||a_{h_1+1}|| \leq ||\lambda||q|$$

and the series

$$a_{h_1+2} + a_{h_1+3} + \cdots + a_{h_1+n+1} + \cdots$$

verifies the hypotheses of the Theorem 2.1. In fact the sequence $\{\|a_{h_1+n+1}\|\}$ is not increasing; moreover, by virtue of the hypothesis on the sequence $\{h_n\}$, among the first p terms of it there is at least one, let us say a_{n_1} , such that $\|a_{n_1}\| \le \|\lambda\|q^2$, among the second p terms of it there is at least one, let us say a_{n_2} , such that $\|a_{n_2}\| \le \|\lambda\|q^3$, and so on; therefore the series $\sum_{k=1}^{\infty} \|a_{n_k}\|$ is convergent, and this implies, obviously, that the series $\sum_{k=1}^{\varphi}$ is absolutely convergent. \square

Theorem 2.3. Let $\varphi(x) \in \mathscr{F}_T$, $T \notin \mathbb{Q}$; furthermore let $q \in]0, 1[$ and $[\alpha, \beta]$ an interval included in [0, T] such that $\varphi(x) \leq q \ \forall x \in [\alpha, \beta]$. Then the series \sum_{λ}^{φ} is absolutely convergent.

Proof. We put $x_0 = \frac{\alpha + \beta}{2}$, $\delta = \frac{\beta - \alpha}{2}$ and apply the Theorem 1.1 choosing a = 1, b = T, $c = -x_0$ and $\varepsilon = \delta$.

Let p, $\{h_n\}$, $\{k_n\}$ be the natural number and the sequences whose existence is insured from Theorem 1.1. Then we have:

$$h_{n+1} - h_n \le p \qquad k_{n+1} - k_n \le p$$

and

$$|h_n - k_n T - x_0| < \delta.$$

From which

$$\alpha + k_n T = x_0 - \delta + k_n T < h_n < x_0 + \delta + k_n T = \beta + k_n T.$$

This implies that $\varphi(h_n) \leq q \quad \forall n \in \mathbb{N}$. Moreover for the Remark 1.1 the sequence $\{h_n\}$ is divergent to $+\infty$ and therefore, for the Theorem 2.2, we have the thesis. \square

Remark 2.1. Theorem 2.3 may be proved also using Weyl's Theorem (on uniform distribution) and reasoning in a similar manner as in Theorem 2.1 of [2].

Corollary 2.1. Let $\varphi(x) \in \mathscr{F}_T$, $T \notin \mathbb{Q}$; furthermore let $\varphi(x)$ be continue in a point $x_0 \in [0, T]$ and it results $\varphi(x_0) < 1$. Then the series \sum_{λ}^{φ} is absolutely convergent.

Corollary 2.2. Let $\varphi(x) \in \mathcal{F}_T$, $T \notin \mathbb{Q}$; furthermore let $\varphi(x)$ be continue in [0, T] and $\lambda \neq 0_{\mathscr{B}}$. Then the series \sum_{λ}^{φ} is absolutely convergent if and only if there exists a point $x_0 \in [0, T]$ such that $\varphi(x_0) < 1$.

Theorem 2.4. Let $\varphi(x) \in \mathcal{F}_T$, $T \in \mathbb{Q}^+$; furthermore let $u \in \mathbb{N} \cap [0, T]$ and let us suppose that $\varphi(u) < 1$. Then the series \sum_{λ}^{φ} is absolutely convergent.

Proof. We set $T = \frac{r}{s}$, where $r, s \in \mathbb{N}$. Then we have

$$0 < u \leq sT$$
,

from which

$$(k-1)sT < u + (k-1)sT \le ksT$$
 $\forall k \in \mathbb{N}$.

Therefore setting

$$h_k = u + (k-1)sT \quad \forall k \in \mathbb{N}$$

we obtain an increasing sequence $\{h_k\}$ of natural numbers such that $\forall k \in \mathbb{N}$ it results

$$h_{k+1} - h_k = sT$$
, $\varphi(h_k) = \varphi(u) < 1$

and hence, for the Theorem 2.2, we have the thesis.

Theorem 2.5. Let $\varphi(x) \in \mathcal{F}$ and $S \subseteq \mathcal{B}$ such that $\forall a \in S$ the closed ball in \mathcal{B} of radius ||a|| and center $0_{\mathcal{B}}$ is included in S; furthermore let $f: S \longrightarrow \mathcal{B}$ be a function verifying the condition $||f(x)|| \leq ||x|| \ \forall x \in S$; finally we suppose that $\forall \lambda \in S$ let the series \sum_{λ}^{φ} be absolutely convergent. Then, defined

$$\begin{cases} a_1 = \lambda \in S \\ a_{n+1} = \varphi(n) f(a_n) & \forall n \in \mathbb{N}, \end{cases}$$

the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

Proof. Being $||f(a_n)|| \le ||a_n|| \ \forall n \in \mathbb{N}$, denoted by b_n the general term of the series \sum_{λ}^{φ} and proceeding inductively we have

$$||a_n|| \leq ||b_n|| \quad \forall n \in \mathbb{N}$$
,

and from this the thesis follows.

Corollary 2.3. Let $\mathscr{B} = \mathbb{R}$ and $\varphi(x) \in \mathscr{F}$; furthermore let $f : [0, a] \longrightarrow \mathbb{R}$ be a function verifying the condition $0 \le f(x) \le x \ \forall x \in [0, a]$; finally we suppose that $\forall \lambda \in [0, a]$ let the series \sum_{λ}^{φ} be convergent. Then, defined

$$\begin{cases} a_1 = \lambda \in [0, a] \\ a_{n+1} = \varphi(n) f(a_n) & \forall n \in \mathbb{N}, \end{cases}$$

the series $\sum_{n=1}^{\infty} a_n$ is convergent.

Proof. It is sufficient to define the function

$$f^*(x) = \begin{cases} f(x) & \forall x \in [0, a] \\ f(-x) & \forall x \in [-a, 0[$$

and apply the Theorem 2.5 choosing as function $f: S \longrightarrow \mathcal{B}$ the function $f^*(x)$.

Remark 2.2. The Corollary 2.3 realize an interesting connection between the series \sum_{λ}^{φ} and the series $\sum_{\lambda,f}$ which we have studied in [1]. We observe that with the alone condition $0 \le f(x) \le x$ the series $\sum_{\lambda,f}$ may be convergent or divergent (see Theorems 1.3 and 1.5 of [1]).

Example 1. Let $\mathscr{B} = \mathbb{R}$. Let us consider the real functions (defined in $[0, +\infty[)]$

$$\varphi_1(x) = |\sin x|, \quad \varphi_2(x) = \sqrt{|\sin x|},$$

$$\varphi_3(x) = \begin{cases} 1 & \text{if } x = k\pi \quad (k \in \mathbb{N}_0) \\ |\sin x|^{|\sin x|} & \text{if } x > 0, \sin x \neq 0 \end{cases}, \qquad \varphi_4(x) = \frac{\sin|\sin x|}{\sin 1},$$

$$\varphi_5(x) = \sin^2\left(\frac{\pi}{2} \frac{\int_0^{\sin x} e^{-t^2} dt}{\int_0^1 e^{-t^2} dt}\right).$$

It is easy to prove that they verify the hypotheses of the Corollary 2.1. Therefore the series $\sum_{\lambda}^{\varphi_i}$ $(i=1,2,\ldots,5)$ are convergent. We observe that, for Kronecker's theorem, we have easily, for $i=1,2,\ldots,5$,

$$\limsup \varphi_i(n) = 1,$$

and therefore the convergence of the series $\sum_{\lambda}^{\varphi_i}$ cannot be obtained with the elementary ratio test.

Example 2. Let $\mathscr{B} = \mathbb{R}$. Let us consider the real functions

$$\varphi_1(x) = |\operatorname{sn} x|, \quad \varphi_2(x) = |\operatorname{cn} x|, \quad \varphi_3(x) = \operatorname{dn} x,$$

where $\operatorname{sn} x$, $\operatorname{cn} x$, $\operatorname{dn} x$ are the elliptic fuctions of Jacobi (see, for example, [5]). We have:

-if the period of $\operatorname{sn} x$, $\operatorname{cn} x$, $\operatorname{dn} x$ is irrational, then the series $\sum_{\lambda}^{\varphi_i}$ (i = 1, 2, 3) are convergent for the Corollary 2.1;

-if the period of $|\operatorname{sn} x|$, $|\operatorname{cn} x|$, $\operatorname{dn} x$ is rational and greater than 1 then the series $\sum_{\lambda}^{\varphi_i}$ (i=1,2,3) are convergent for the Theorem 2.4.

Example 3. Let $\mathscr{B} = \mathbb{R}$. Let us consider he real functions

$$\varphi(x) = \sin^2 x \quad x \in [0, +\infty[, \qquad f(x) = \arctan x \quad x \in [0, a].$$

We see easily that they verify the hypoteses of the Corollary 2.3, therefore, setting

$$\begin{cases} a_1 = \lambda \in [0, a] \\ a_{n+1} = (\sin^2 n) \arctan a_n, \end{cases}$$

the series $\sum_{n=1}^{\infty} a_n$ is convergent.

Example 4. Let $\mathscr{B} = C^0([0,1])$ and $K(x,y) \in C^0(\mathbb{R} \times [0,1])$ such that $|K(x,y)| \leq |x| \quad \forall x \in \mathbb{R}$. Let us define a function $f: \mathscr{B} \longrightarrow \mathscr{B}$ setting

$$f(\psi) = \int_0^1 K(\psi(x), y) \, dy \quad \forall \psi(x) \in \mathscr{B}.$$

Being

$$\left| \int_0^1 K(\psi(x), y) \, dy \right| \le \int_0^1 |K(\psi(x), y)| \, dy \le \int_0^1 |\psi(x)| \, dy = |\psi(x)|,$$

it results $||f(\psi)|| \le ||\psi||$. Then by virtue of Theorem 2.5, if the series \sum_{λ}^{φ} is absolutely convergent, we deduce that the series whose terms are given recursively by the formula

$$\begin{cases} a_1 = \lambda \in \mathcal{B} \\ a_{n+1} = \varphi(n) f(a_n) & \forall n \in \mathbb{N}, \end{cases}$$

is absolutely convergent.

Example 5. Let $\mathscr{B} = L^2([0,1])$ and $K(x,y) \in C^0(\mathbb{R} \times [0,1])$ such that $0 \le K(x,y) \le x \quad \forall x \in \mathbb{R}$. Setting, as in the previous example,

$$f(\psi) = \int_0^1 K(\psi(x), y) \, dy \quad \forall \psi(x) \in \mathscr{B},$$

we obtain a function $f: \mathcal{B} \longrightarrow \mathcal{B}$ that verifies the condition $||f(\psi)|| \le ||\psi||$. Therefore the same conclusion as in the previous example follows.

REFERENCES

- [1] G. Fiorito R. Musmeci M. Strano, Sulle serie il cui termine generale é definito per ricorrenza, Le Matematiche, 46 (1991), pp. 681-696.
- [2] G. Fiorito R. Musmeci M. Strano, *Uniforme distribuzione ed applicazioni ad una classe di serie ricorrenti*, Le Matematiche, 48 (1993), pp. 123-133.
- [3] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton U. Press, 1981.
- [4] G. Hardy E. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1954.
- [5] F. Tricomi, Equazioni Differenziali, Boringhieri, 1967.

Dipartimento di Matematica, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy)