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DIOPHANTINE APPROXIMA_TIONS AND CONVERGENCE
OF SERIES IN BANACH SPACES

GIOVANNI FIORITO - ROSARIO MUSMECI - MARIO STRANO

In this paper we give a new proof of a known diophantine approximation
result, then we apply this to prove convergence of a class of series in a Banach
space, whose terms are defined recursively.

Introduction.

Let & be the class of functions f : [0, +oo[—> [0, 1] and #+ the subset
of & of the periodical functions of period T. Let & be a real Banach space.
Vi eZBandVy e F wedenoteby > 5 the series (in &) whose terms are defined
recursively by

aI:A
an1 = @(n) a, VneN.

As itis easy to prove the Kronecker’s theorem (see, for example, [4], p. 373)
implies that, given a, b € R* (3 ¢ Q), c € R, then Ve > 0 there exist two
sequences {h,} and {k,} of integers such that

|hna —kpb +cl < €.

An interesting property of the sequences {h,} and {k,} is that they have
bounded gap (i.e. there exists p € N such that A,y — h, < p, knt1 — kn < p,
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V n € N). This is equivalent to say that the set & = {(h,, k,)} is syndetic (see
[3] Theorem 1.15 and Lemma 1.25). In the first section we give a new simple
proof of this property. In the second section we apply this result to prove the
convergence of the series Y . In doing this we also utilize a general convergence
theorem that we have proved to hold in % (Theorem 2.1). Other results complete
the section. At the end some examples are given to explain the theory.

1. Diophantine approximation.
We begin proving the following preliminary result

Lemma 1.1. Leta,beR", a > b, ¢ € R. Furthermore let h, k € N such that
|ha —kb+c| < a—b. Then there exists h € N, depending only on a and b, such
that:

1) ifha—kb+c>O0then|(h+h—1Da—(k+hb+c|<a=—b;

2) ifha—kb+c<Othen|(h+h)a—(k+h+1)b+c|<a-b.

Proof. Let i be the lowest natural number such that A(a — b) > b. From this it
follows

(1) ha—b)=b+y  with 0<y' <a-—b.
Now we put
) ha —kb+c=y

and distinguish two cases.
1° case: y > 0. From (1) and (2) we have

(h+ha—G(k+hb+c=b+y+y

from which _ )
b<Mh+ha—-—(tk+hb+c<a+a-—->

hence ) ;
—(a-b)<th+h-1VDa—-(k+hb+c<a->,

and therefore the thesis.
2° case: y < 0. From (1) and (2) we have again

(h+ha—(k+hb+c=b+y+y
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from which ) -
b+y<th+ha—(k+hb+c<b+y’

hence
—a-by<y<Mh+ha—(k+h+Db+c<y <a-b,

and this completes the proof. O

Theorem 1.1. Leta,beR* (3 € Q), ceR. Then Ve > 0 there exist a natural
number p, depending only on a, b, &, and two sequences of natural numbers
{h,} and {k,}, depending only on a, b, c, &, one not decreasing and the other
increasing such that Vn € N it results

hn+1 —hy < p, kn+1 —k, < p

and
|hna — kyb +c| < &.

Proof. For the Kronecker’s theorem there exist A, k € N, depending only on
a, b, e,such that 0 < |ha — kb| < €. Let us suppose at first ha — kb > 0. Again
for the Kronecker’s theorem there exist h*, k* € N, depending only on a, b, ¢, ¢,

such that
|h*(ha) — k*(kb) + c| < ha — kb .

By virtue of the Lemma 1.1 there exists h € N depending only on ha, kb (and
hence only on a, b, €) such that, setting

and VneN

, _{h;+ﬁ—1 if k! (ha) —k,(kb) +c >0
n+1 =

B +h if k. (ha) — Kk, (kb) +c <0
, __{k;+iz if R (ha) —k,(kb) +¢ >0
UK +h+1 if R (ha) — K. (kb) +c <0

it results (proceeding inductively)

|h, (ha) — k, (kb) +c| < ha —kb <& VneN.
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At this point, setting .
p = max(hh, k(h + 1))

and

h, = h)h, kn, =k k VneN,
we obtain two sequences {h,} and {k,}, the first not decreasing and the second
increasing, that verify all the conditions of the thesis.

If, otherwise, it is ha — kb < 0, for the Kronecker’s theorem again, there
exist h*, k* € N, depending only on a, b, ¢, &, such that :

|k*(kb) — h*(ha) — c| < kb — ha .

Proceeding, then, as in the previous case we found the sequences of natural
numbers {k,} and {h,}, the first not decreasing and the second increasing, and
a natural number p, such that Vn e N

kn+l —ky < D, hn+1 —h, < D

and
Nknb —hya —c| <e.

And from this the thesis follows easily. g

Remark 1.1. The sequences {h,} and {k,} of the previous theorem are both
divergent to +o0.

- / i

2. Convergence of series in Banach space .

[e.@)
Lemma 2.1. Let ) a, be a series of non-negative real numbers such that the
- n=l1
following properties hold:

1) the sequence {a,} is not increasing;
2) there exist a natural number p and a subsequence {a,,} of {a,} such that

an, €E{Ax-1)p+1, A1) p+2, - - - » Akp} VkeN,

o.¢)
and the series Y an, is convergent,
k=1 :
oo

Then the series Y, a, is convergent.
n=1
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o0

Proof. Let us denote by {S,} the sequence of partial sums of the series ) a,
- n=1

and let us consider the subsequence {Sx,} of {S,}. Then we have:

Sp =< pai
and

Skp 5pa1+pan1 +paﬂ2 +l"'+pank_1 = .
=pa1+p(an,+an2+"'+ank_1)y szz

' O
from which it follows, by virtue of the convergence of the series ) a,,, that
n=1

the sequence {Sk,} is convergent. And this implies that the sequence {S,} is
convergent, and therefore the thesis. ]

[ee]
Theorem 2.1. Let ) a, be a series in 9B such that the following properties

. n=1
hold:

1) the sequence {||a,|} is not increasing;
2) there exist a natural number p and a subsequence {ay,} of {a,} such that

an, €{AG—1)p+1, AGh—1)p+25 - - - » Gkp} VkeN,
o0
and the series )_ |\an,|| is convergent.
k=1

o0
Then the series Y ay is absolutely convergent.
n=1

Proof. It follows immediately from the previous lemma. O
Theorem 2.2. Let ¢(x) € %, furthermore let p € N, q € 10, 1[ and {h,} a
sequence of natural numbers not decreasing and divergent to +00 such that

hpny1 — hy < p, ¢hn) <q VneN.

Then the series Y 5 is absolutely convergent.

Proof. Being
any1 = Ap(Dp(2)...9(n)  VneN,

it results
lan,+11l < lIAllq
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and the series
Qp42 + Ap43 + oo+ Apypny1 00

verifies the hypotheses of the Theorem 2.1. In fact the sequence {||an,+n+1ll}
is not increasing; moreover, by virtue of the hypothesis on the sequence {k,},
among the first p terms of it there is at least one, let us say an,, such that ||la, || <
IAlig?, among the second p terms of it there is at least one, let us say a,,, such
‘ o0
that ||a,, || < ||Allg>, and so on; therefore the series 3" llan, || is convergent, and
k=1
this implies, obviously, that the series Y & is absolutely convergent. d

Theorem 2.3. Let ¢(x) € Fr, T ¢ Q; furthermore let g €10, 1[ and [, B] an
interval included in [0, T'] such that ¢(x) < q Vx € [a, B). Then the series Zf
is absolutely convergent.
Proof. We put xy = “—;—ﬂ, 5 = % and apply the Theorem 1.1 choosing
a=1,b=T, c=—xpand ¢ = 4.

Let p, {h.}, {k»} be the natural number and the sequences whose existence
is insured from Theorem 1.1. Then we have:

hn+l - hn =p kn+1 - kn =p
and
|\hy — knT — x0] < 6.

From which
& +k,T =x0—8+k,T <hy, <xo+8+k,T =B+k,T.

This implies that ¢(h,) < g Vn € N. Moreover for the Remark 1.1 the
sequence {h,} is divergent to +o0 and therefore, for the Theorem 2.2, we have
the thesis. U '

Remark 2.1. Theorem 2.3 may be proved also using Weyl’s Theorem (on uni-
form distribution) and reasoning in a similar manner as in Theorem 2.1 of [2].

Corollary 2.1. Let (x) € Fr, T ¢ Q; furthermore let ¢(x) be continue in a
point xo € [0, T] and it results ¢(xg) < 1. Then the series Zf is absolutely
convergent.

Corollary 2.2. Let ¢(x) € Fr, T ¢ Q; furthermore let p(x) be continue in
[0, T] and A # Og. Then the series Y_; is absolutely convergent if and only if
there exists a point xy € [0, T such that ¢(xp) < 1.
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Theorem 2.4. Let o(x) € Fr, T € QF; furthermore let u e NN [0, T] and let
us suppose that (u) < 1. Then the series Y 3 is absolutely convergent.

Proof. WesetT = X, where r, s € N.Then we have

N

O<u<sT,

from which
(k—1)sT <u+(k—1)sT <ksT VkeN.
Therefore setting
hy =u+ (k—1)sT VkeN

we obtain an increasing sequence {A;} of natural numbers such that Yk € N it

results
hiv1 —he =8T, @) =) <1

and hence, for the Theorem 2.2, we have the thesis. O

Theorem 2.5, Let ¢(x) € & and S C 9B such thatVa € S the closed ball in &
-of radius ||a|| and center Og is included in S; furthermorelet f : S —> B bea
Junction verifying the condition || f (x)|| < ||x|| Vx € S, finally we suppose that
VA €S let the series Y be absolutely convergent. Then, defined

a=AeS
apy1 = (p(n)f(an) Vn EN,

o0
the series > a, is absolutely convergent.
n=1
Proof. Being || f(as)|| < llaxll Yn € N, denoted by b, the general term of the
series Y ¢ and proceeding inductively we have

NManll = libnll VYreN,

and from this the thesis follows. ]

Corollary 2.3. Let # = R and ¢(x) € F; furthermore let f : [0, a] —> R be
a function verifying the condition 0 < f(x) < x Vx €[0, al; finally we suppose
that VA €0, a] let the series Zf be convergent. Then, defined

a; =A€]0,al
An+1 = @(n) f(an) VneN,

the series ) ay, is convergent.
n=1



356 GIOVANNI FIORITO - ROSARIO MUSMECI - MARIO STRANO

Proof. Tt is sufficient to define the function

" 1 fx) Vx el[0,al
S = {f(——x) Vxel—a,O[

and apply the Theorem 2.5 choosing as function f : § —> % the function
f*®. O

Remark 2.2. The Corollary 2.3 realize an interesting connection between the
series )} and the series ), . which we have studied in [1]. We observe that
with the alone condition 0 < f(x) < x the series ), 5 may be convergent or
divergent (see Theorems 1.3 and 1.5 of [1]).

Example 1. Let 2 = R. Let us consider the real functions (defined in [0, +o0[)

o1(x) = |sinx], @(x) =/|sinx],

1 if x=kmr (keNp) __sin|sinx|
vs(x) = { sinxfld if x>0 sinx£0 0 PO T T
sinx  _,2
oy e dt
(pS(X) = Sin (—2--—‘1——:—2‘—> .
. Jo e dt
It is easy to prove that they verify the hypotheses of the Corollary 2.1.
Therefore the series » ;' (i =1,2,...,5) are convergent. ~
We observe that, for Kronecker’s theorem, we have easily, fori = 1,2,...,5,

limsupg;(n) =1,

and therefore the convergence of the series Y 3 cannot be obtained with the
elementary ratio test.

Example 2. Let 28 = R. Let us consider the real functions
@1(x) = [snx|, @(x)=|cnx|, ¢3(x)=dnx,

where snx, cnx, dnx are the elliptic fuctions of Jacobi (see, for example, [5]).
We have:

-if the period of snx, cnx, dnx is irrational, then the series Z‘f" (i =
1, 2, 3) are convergent for the Corollary 2.1;

-if the period of |snx|, |cnx|, dnx is rational and greater than 1 then the
series ) ;' (i = 1,2, 3) are convergent for the Theorem 2.4.
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Example 3. Let & = R. Let us consider he real functions
@(x) =sin’x  x €[0, +oo[, f(x) =arctanx xe€[0,a].

We see easily that they verify the hypbteses of the Corollary 2.3, therefore,
setting o
ar =i €]0,a]
Ap+] = (sinz.n.) arctana, ,

o0
the series ) a, is convergent.
n=1

Example 4. Let Z = C°([0,1]) and K (x,y) € CO(R x [0, 1]) such that
|K(x,y)] < |x| VxeR.Letus define a function f : & —> & setting

1
f(l/f)=/0 KWx),y)dy Vy(x)eB.

_ Being

1 ' 1 1
[ Ko dy| < | K@@ idy < [ weldy = wel,

itresults || f (1/f)" < [l¥]l. Then by virtue of Theorem 2.5, if the series Zf is ab-
solutely convergent, we deduce that the series whose terms are given recursively

by the formula |
{ a; = A€ 87

an+1 = @(n) f(an) VneN,

is absolutely convergent.

Example 5. Let Z = L%([0,1]) and K(x,y) € C°(R x [0, 1]) such that
0 < K(x,y) <x VxeR. Setting, as in the previous example,

1 . : )
F) = fo KW@, y)dy Vyx)ed,

we obtain a function f : & — £ that verifies the condition || f(¥) || < [l
Therefore the same conclusion as in the previous example follows.
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