SPECIAL FANO MANIFOLDS AS AMPLE DIVISORS

CRISTIANA SACCHI

Let A be a projective manifold of dimension $n \geq 3$ contained as an ample divisor in a projective manifold X and let $L = \mathcal{O}_X(A)$. In this paper we study the pairs (X, L) in the following two cases:

i) A a Fano manifold of coindex 3 and Picard number 1;
ii) A a Fano manifold of product type.

Introduction.

It is well known that it is a strong condition for a projective manifold X to contain a fixed projective manifold A as an ample divisor. Let $L = \mathcal{O}_X(A) \in \text{Pic}(X)$: the aim of this paper is to classify pairs (X, L) as above in some special instances.

For $A = \mathbb{P}^n$ or a smooth hyperquadric $Q^n \subseteq \mathbb{P}^{n+1}$ the result is well known [9], [1] and in [6] the classification is given when A is a Del Pezzo manifold. In this paper we study the following two cases:

i) A is a Fano manifold of coindex 3 and Picard number 1;
ii) A is a Fano manifolds of product type.

Recall that A is Fano if $-K_A$ is ample. The index of A is the largest integer r such that $-K_A = rH$, with $H \in \text{Pic}(A)$ ample and the coindex c of A is defined as $c = \dim A + 1 - r$.

Entrato in Redazione il 15 luglio 1994.

AMS 1991 Subject Classification: 14C20, 14J45, 14J40.
The list of possible pairs occurring in case i) is given by Theorem 1.1, combined with the classification by Mukai of coindex 3 Fano manifold [7].

As to case ii), we prove in section 2 that necessarily $A = \mathbb{P}^1 \times Z$ with Z Fano and that if Pic (Z) $\cong \mathbb{Z}$ then X is a fibration over \mathbb{P}^1 whose general fibre is a Fano manifold F with Picard number 1 and index $r+s$, where $r =$ index (Z) and $L_F = sH$, H denoting the ample generator of Pic (F). In particular for $Z \subseteq \mathbb{P}^n$ a hypersurface of degree $a \geq 2$, we also prove that $\mathbb{P}^1 \times Z$ cannot be contained fiberwise into a \mathbb{P}^n-bundle over \mathbb{P}^1 (Theorem 2.4). For $Z = \mathbb{Q}^{n-1}$ the above argument gives as a corollary that an X as above has to be a \mathbb{Q}^n-fibration over \mathbb{P}^1. This, combined with a result by Paranjape-Srinivas [8] allows us to obtain a small progress on a discussion related to a conjecture by Fania-Sommese [4], p. 216.

All symbols and terminology used in the paper are standard in algebraic geometry. We always consider holomorphic line bundles and, following current abuses, we do not distinguish between a line bundle and the corresponding invertible sheaf; moreover we use the additive notation for the tensor product of line bundles. Furthermore, if $L \in \text{Pic } (X)$ is a line bundle on a projective manifold X, L_Y will denote its restriction to a submanifold Y.

1. Coindex 3 Fano manifolds with Picard number 1 as ample divisors.

Let A be a Fano n-fold contained as an ample divisor in a projective $(n+1)$-fold X and let $L = \mathcal{O}_X(A)$. Let c be the coindex of A. It is well known ([9], p. 67, [1], Theorem 4), that if $c = 0$ then $(X, L) = (\mathbb{P}^{n+1}, \mathcal{O}(1))$ while if $c = 1$ then $(X, L) = (\mathbb{P}^{n+1}, \mathcal{O}(2))$ or $(\mathbb{Q}^{n+1}, \mathcal{O}(1))$. The case $c = 2$ is studied in [6], Appendix; here we deal with case $c = 3$.

Theorem 1.1. Let A be a coindex 3 Fano n-fold with $n \geq 3$, contained as an ample divisor in a smooth projective $(n+1)$-fold X and let $L = \mathcal{O}_X(A)$. Assume Pic (A) $\cong \mathbb{Z}$; then (X, L) is one of the following pairs:

i) $(X, H) = (X, L)$ is a coindex 3 Fano $(n+1)$-fold with Pic (X) $\cong \mathbb{Z}$ generated by L;

ii) (X, H) is a Del Pezzo $(n+1)$-fold with Pic (X) $\cong \mathbb{Z}$ and $L = 2H$, where H generates Pic (X), except (\mathbb{P}^3, $\mathcal{O}(2)$);

iii) $(\mathbb{Q}^{n+1}, \mathcal{O}(3))$;

iv) $(\mathbb{P}^{n+1}, \mathcal{O}(4))$.

Proof. Let $-K_A = (n-2)h$, where h is an ample element of Pic (A). From $n-2 =$ index (A) it is immediate to see that h generates Pic (A). As $n \geq 3$, by the Lefschetz theorem (see [9], p. 56) we have Pic (X) $\cong \text{Pic } (A) \cong \mathbb{Z}$. Let
\(H \in \text{Pic}(X) \) be the element such that \(H_A = h \). Note that \(H \) generates \(\text{Pic}(X) \), so we can write \(L = aH \) and \(K_X = rH \) for some integers \(r \) and \(a > 0 \). By adjunction we have

\[
(n - 2)h = -K_A = -(K_X + L)_A = -(r + a)H_A = -(r + a)h,
\]

hence

\[
-K_X = ((n - 2) + a)H = (\dim X - (3 - a))H.
\]

This implies \(a \leq 4 \) by the Kobayashi-Ochiai theorem. Since \(a \geq 1 \) we get the following possibilities:

i) \(a = 1 \), in which case \(X \) is a coindex 3 Fano manifold and \(L = H \) generates \(\text{Pic}(X) \);

ii) \(a = 2 \), in which case by definition \((X, H) \) is a Del Pezzo manifold with \(\text{Pic}(X) \cong \mathbb{Z} \) and \(L = 2H \). From Fujita's classification of Del Pezzo manifolds ([5], I.8.11), we obtain 5 cases. Note that even thought \((X, H) = (\mathbb{P}^3, \mathcal{O}(2)) \) is a Del Pezzo manifold with \(\text{Pic}(X) \cong \mathbb{Z} \), it cannot contain \(A \) as an ample divisor since in this case \(H \) does not generate \(\text{Pic}(X) \);

iii) \(a = 3 \), in which case \((X, H) = (\mathbb{P}^{n+1}, \mathcal{O}(1)) \) by the Kobayashi-Ochiai theorem and \(L = \mathcal{O}(3) \);

iv) \(a = 4 \), in which case \((X, H) = (\mathbb{P}^{n+1}, \mathcal{O}(1)) \) by the Kobayashi-Ochiai theorem and \(L = \mathcal{O}(4) \).

For the classification of Fano manifolds of coindex 3 occurring in i) see [7]. Note also that by adjunction it is immediate to see that the list in Theorem 1.1 is effective; of course in case i) we have to suppose that the linear system of the ample generator of \(\text{Pic}(X) \) contains a smooth element. This is true for \(\dim X = 4 \) ([10], p. 173), and conjectured for \(\dim X > 4 \).

2. Fano products as ample divisors.

2.0. - Let \(A \) be a Fano manifold of product type contained as an ample divisor in a smooth projective \((n + 1)\)-fold \(X \).

Proposition 2.1. Let \(A \) be as in 2.0. Then \(A = \mathbb{P}^1 \times Z \), where \(Z \) is a Fano manifold.

Proof. If \(A \) is a product contained as an ample divisor in a projective manifold \(X \) then \(A \) has precisely two factors and one of them is 1-dimensional ([9], Prop. IV), so \(A = Z \times Y \) with \(\dim Y = 1 \). By adjunction we have

\[
K_Z = (K_A + \det N_{Z|A})_Z = (K_A)_Z,
\]
since the normal bundle $N_{Z|A}$ is trivial as Z is a factor of A; hence $-K_Z$ is ample so Z is Fano. Similarly we prove that Y is Fano, therefore $Y = \mathbb{P}^1$. \hfill \Box

2.2. - Let $A = \mathbb{P}^1 \times Z$ be as in 2.0. Consider the projection $p : A \rightarrow \mathbb{P}^1$ (whose fibres are obviously isomorphic to Z). If $\dim Z \geq 2$ then p extends to a fibration $\tilde{p} : X \rightarrow \mathbb{P}^1$ ([9], Prop. III). Let F be the general fibre of \tilde{p}. As $Z = F \cap A$ we have that $[Z] = [A]_F$ is ample in $\text{Pic} (F)$.

2.2.1. - Assume that $\text{Pic} (Z) \cong \mathbb{Z}$ and $\dim Z \geq 3$; then by the Lefschetz theorem $\text{Pic} (F) \cong \text{Pic} (Z) \cong \mathbb{Z}$. Let h be the ample generator of $\text{Pic} (Z)$; then $-K_Z = rh$. Let $H \in \text{Pic} (F)$ be the element such that $H_Z = h$. Note that H generates $\text{Pic} (F)$, so we can write $[A]_F = sH$ for a suitable integer $s > 0$.

Proposition 2.3. Let Z and F be as in 2.2.1. Then F is a Fano manifold with $\text{Pic} (F) \cong \mathbb{Z}$ and index $(F) = r + s$.

Proof. By adjunction we have

$$K_Z = (K_F + [Z])_Z = (K_F + [A]_F)_Z,$$

therefore

$$-(K_F)_Z = ([A]_F)_Z - K_Z = sH_Z + rh = (r + s)h,$$

hence $-K_F = (r + s)H$. \hfill \Box

It is obvious that $\mathbb{P}^1 \times \mathbb{Q}^n$ embedded in $\mathbb{P}^1 \times \mathbb{P}^{n+1}$ componentwise cannot be an ample divisor. A less obvious fact is that $\mathbb{P}^1 \times \mathbb{Q}^n$ cannot be contained as an ample divisor in a \mathbb{P}^{n+1}-bundle $p : P \rightarrow \mathbb{P}^1$ in such a way that p extends the projection onto the first factor. This is shown by the following

Theorem 2.4. Let $P = \mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}^1$ be a \mathbb{P}^{n}-bundle over \mathbb{P}^1 and let $L = \sum_{F \in \text{Pic} (P)} a_F \xi + b[F] \in \text{Pic} (P)$ be an ample line bundle, where ξ stands for the tautological bundle of \mathcal{E} and F for a fibre. Then $|L|$ cannot contain an element $Y = S_a \times \mathbb{P}^1$, where $S_a \subseteq \mathbb{P}^n$ is a smooth hypersurface of degree $a \geq 2$, such that $p |_Y$ is the projection onto the second factor.

Proof. By contradiction assume that $Y = S_a \times \mathbb{P}^1 \in |L|$. By well known properties of vector bundles on \mathbb{P}^1 we have $\mathcal{E} = \bigoplus_{i=0}^{n} \mathcal{E}(a_i)$, where $a_i \leq a_{i+1}$ for $0 \leq i \leq n - 1$.

Claim. \mathcal{E} is globally generated.
As $\xi_F = \mathcal{O}(1)$, ξ_{S_a} embeds S_a in \mathbb{P}^n, so ξ_{S_a} is very ample. Being $\mathcal{E} = p_\ast \xi$, it follows that $H^0(\mathcal{E}) \cong H^0(\xi)$. Let t be any point of \mathbb{P}^1 and let

$$(S_a)_t = p |_{\mathbb{P}^1}(t) = p^{-1}(t) \cap Y.$$

We have $H^0(\xi_{(S_a)_t}) \cong H^0(\mathcal{E}_t) \cong \mathcal{E}_t$, where \mathcal{E}_t is the fibre of \mathcal{E} at the point t. Consider the following commutative diagram:

\[
\begin{array}{ccc}
H^0(\mathcal{E}) & \overset{\sim}{\longrightarrow} & H^0(\xi) \\
\downarrow & & \downarrow \\
H^0(\mathcal{E}_t) & \overset{\sim}{\longrightarrow} & H^0(\xi_{(S_a)_t})
\end{array}
\]

where the vertical arrows are restrictions. Since the morphism $H^0(\xi) \longrightarrow H^0(\xi_{(S_a)_t})$ is surjective, then even the morphism $H^0(\mathcal{E}) \longrightarrow H^0(\mathcal{E}_t)$ is surjective, which proves the claim.

As a consequence of the claim we have $a_i \geq 0$ for $0 \leq i \leq n$; up to tensoring \mathcal{E} by $\mathcal{O}(-a_0)$ we can assume $a_0 = 0$. Then $a > 0$, $b > 0$ since L is ample ([2], 3.2.4), and $c_1(\mathcal{E}) = a_0 + \cdots + a_n \geq 0$. Let $\delta = c_1(\mathcal{E})$; by the canonical bundle formula (see [5], p. 2) we have

$$K_P = -(n + 1)\xi + p^\ast(c_1(\mathcal{E}) + K_{\mathbb{P}^1}) = -(n + 1)\xi + (\delta - 2)[F],$$

hence by adjunction

\[(2.4.1) \quad K_Y = (K_P + L)_Y = (a - n - 1)\xi_Y + (\delta + b - 2)[F]_Y.\]

On the other hand, as $Y = S_a \times \mathbb{P}^1$ we have

\[(2.4.2) \quad K_Y = \mathcal{O}(a - n - 1, -2) = (a - n - 1)\xi_Y - 2[F]_Y.\]

Comparing (2.4.1) with (2.4.2) we get $\delta + b = 0$ but this leads to a contradiction since $b > 0$ and $\delta \geq 0$. \square

As a consequence of Theorem 2.4 we have the following

Corollary 2.5. *The Fano manifold $A = \mathbb{Q}^{n-1} \times \mathbb{P}^1$ can be contained fiberwise as an ample divisor only in a \mathbb{Q}^n-fibration over \mathbb{P}^1.***
\textbf{Proof.} Let $p : X \longrightarrow \mathbb{P}^1$ be the fibration extending the projection $A \longrightarrow \mathbb{P}^1$ and assume that $A \subseteq X$ is an ample divisor. By Proposition 2.3 the general fibre F of p has to be either \mathbb{Q}^n or \mathbb{P}^n; therefore by applying Theorem 2.4 with $a = 2$ we conclude that $F = \mathbb{Q}^n$. \square

In the special case $n = 4$, Corollary 2.5 combined with a theorem by Paranjape-Srinivas [8] gives a result related to the last remark in the paper by Fania-Sommese [4], p. 216. We have in fact

\textbf{Corollary 2.6.} Let Z be a Fano 3-fold and assume that $A = Z \times \mathbb{P}^1$ is contained as a very ample divisor in a smooth projective 5-fold X. Assume furthermore that $Z \neq \mathbb{P}^3$. Then $Z = \mathbb{Q}^3$ and X is a \mathbb{Q}^4-fibration over \mathbb{P}^1.

\textbf{Proof.} By a result of Sommese quoted in [4], p. 216, there is a 2 to 1 morphism $f : \mathbb{Q}^3 \longrightarrow Z$. The existence of such a morphism implies that $Z = \mathbb{Q}^3$ by [8] (see also [3]), then the assertion follows from Corollary 2.5. \square

\textbf{REFERENCES}

*Dipartimento di Matematica “F. Enriques”,
Università di Milano,
Via C. Saldini 50,
20133 Milano (Italy)*