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THE USE OF THE E-METRIC SPACES IN
THE SEARCH FOR FIXED POINTS

E. DE PASCALE - G. MARINO - P. IETRAMALA

We prove some general theorems on the convergence of the successive
approximations x, = Ax,_; to a fixed point of a nonlinear contraction map-
ping A defined on an E-metric space. We derive, as applications, some fixed
point theorems in uniform spaces and an abstract Cauchy-Kowalewski type
theorem.

1. Introduction.

Let (X, d) be a complete metric space and A: X — X a continuous opera-
tor. We are interested in the solution of

(1) Ax =x.
If A satisfies a condition of the type
(2) Jk <1 suchthat d(Ax, Ay) <kd(x,y) Vx,yeX,

then the Contraction Mapping Principle solves positively (1) for the existence
and uniqueness as well. Anyway condition (2) is too much restrictive. Many con-
crete situations can be reduced to verify (2) only with a big loss of generality and
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in some cases, condition (2) is not completely feasible. The class of “contractive”
operators becomes wider if we allow the metric d to assume its values in a linear
space E ordered by a cone E ... In fact the product by the Lipschitz constant k in
the condition (2) can be replaced by the action on d(x, y) of a suitable (possibly
nonlinear) operator S: E, — E..

Perhaps the role of the E-metric spaces, 1ntroduced about forty years ago
([3], [8]), is not yet sufficiently explored. It seems to us that the fixed point the-
orems in E-metric spaces are, possibly, a useful tool in dealing with differential
equations. For example, we obtain in a simple way an abstract nonlinear Cauchy-
Kowalewski theorem in the case of weak singularity (for a general formulation
and related problems for the abstract Cauchy-Kowalewski type theorems cft. [2],
[5], [6], [7], (D).

The general setting of E- metrlc spaces also favours the linguistic point of
view, because it allows us to unify and simplify results that are involved in other
contexts (e.g. we obtain from the simple Corollary 1 some fixed point theorems
in uniform spaces due to Angelov [1]).

- Now it is necessary to introduce some notations and definitions. We follow
[10].

Let E be areal linear space partially ordered by <andletEf ={e€E:e >
0} be the positive cone of E.

A notation of convergence of sequences in E(e, — e or e = lim e,,) is a
linear convergence if the following properties are satisfied:

1. ife, = e Vn, then lime, = e;

lime, = e implies lim e,» = e for every subsequence (e,) of (e,);
lime, = e and lim f, = f imply lim(e, + f,) = e + f;

lime, = e implies lim(re,) =re VrelR;

ife, < f, Vnand lime, = ¢, lim f, = f thene < f;

if f, <e, < gpandlim f, = limg, = e then also lime, = e.

AR o

Let X be a nonempty set and let ‘E be an ordered linear space with a notion
of linear convergence. An E-metric on X is a mapping d: XxX — E subject
to the usual axioms:

d(x,y) =0ifand only if x = y;
d(x,y) =d(y, x);
dx,y) <d(x,z)+d(z, ¥

By E-metric space we mean a nonempty set X with an E-metricon X. The
ordered space E is briefly called the metrizing space for X.

A sequence (x,) of elements of an E-metric space X is said convergent
toward x € X (and we write x, — x) if d(x,,x) = 0 as n — oo.
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A sequence (x,) in X is said to be a Cauchy sequence if d(x,, x,,) — 0 as
n, m — oo (to be more precise, in the ordered linear space E, the limit is defined
only for sequences and not for double sequences. To avoid any misunderstand-
ing, d(x,, x,) — 0 for n,m — o0, means d(x,,, xm,) —> 0 as k — oo for all
choice of the subsequences (ny), (mg).

The E-metric space X is said to be sequentially complete if each Cauchy
sequence in X converges to a pointin X.

A subset Y of an E-metric space X is said to be bounded if the set
{d(x,y):x,y €Y} has an upper bound in E. , :

For more informations concerning ordered linear spaces, E-metric spaces
and related topics, see [3] and [10].

We give some remarks with respect to the above definitions.

(a) In an ordered topological vector space (E, 1, <), the T-convergence is not,
in general, a linear convergence. In fact, Axioms 1 - 5 hold but Axiom 6, essential
in our proofs, doesn’t always hold. For this, some additional hypotheses on E are
needed. For example, if E is an ordered Banach space, the “policeman lemma”
(the more popular name for Axiom 6) holds if and only if the norm on E is
semimonotone, i.e. if there exists b > O such that 0 < x < y implies ||x|] <
blly]l (Theorem 4.3 of [4]).

(b) Insolving (1) we are interested only on sequences convergence in X (more
precisely, we are interested on the existence of an X € X such that A"X con-
verges). More general types of convergence (nets, filters, etc.) are not involved
in this context.

(c) The space X in which we want to solve (1), is usually equipped with an
algebraic-topological structure that can be described independently from an E-
‘metric d. The introduction of a such E-metric d (not uniquely determined) on
X is justified by the fact that d is choosen in such a way that the operator A is
persuaded to become “contractive”. In this situation 4 is subject to the condition:
d(x,,x) — 0 implies x, — x in the topology of X.

2. Results.
The following Theorems 1 and 2 are our main results.

Theorem 1. Let E be an ordered linear space with a notion of linear conver-
gence in which every nonempty countable subset having an upper bound has
the supremum. Let X be a sequentially complete E-metric space. Let S: E; —
E. be an increasing operator and let A: X — X be an S-contraction i.e.
d(Ax, Ay) < Sd(x,y) Vx,y € X. Furthermore S is “small” in-the following
sense:
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(i) fueEy, lim f, = 0 imply lim Sf,, = SO.
(ii) there exists xy € X such that the orbit (A"xy) is bounded and §" fy — 0O
where fy is the diameter of the orbit,

fo= sup d(A"xg, A"xp).

n.m>=0

Then there exists X = limA"xy and X = AX. Moreover, if S"d(x,y) — 0
Vx,y€X, then A has a unique fixed point.

Proof. Let
fo = sup d(A"xg, A¥xp), n=0,1,2....
h,k>n

Then

Jn < sup Sd(A" 1xy, A¥1xp) < S[ sup d(A*x, Akxo)] =
h

h,k>n Jk>n—1

=Sfi_1 <8 fu2<S"fo >0,

and consequently (A”xp) is a Cauchy sequence in X. From the sequential com-
pleteness of the space X, we have that there exists £ € X such that X = lim A" xg.
Now we show that X = Ax. First, we note that SO = 0, since d(X, Ax) <
d(x, A"xg) + d(A"xy, AX) < d(%X, A"xp) + Sd(A" !xy, £) — 0. Moreover,
if S"d(x,y) > 0Vx,y € X and Ax; = x1, Axy = xp, then d(xy,x3) =
d(Axy, Axy) < §"d(x1, x3), SO X1 = X». d

Theorem 2. Let E be an ordered linear space with a notion of linear conver-
gence. Let X be a sequentially complete E-metric space. Let (S,) be a family of
operators S,: E — E andlet A: X — X be a map such that

d(A"x,A"y) < S,d(x,y) VneN and x,yeX.

Suppose that:

(i) fk ek, lim fk = 0 imply lim Slfk =0;

(ii) there exists xy € X such that the series ), S,d(xo, AXg) is convergent.
Then A has at least one fixed point. Moreover, if either Sy is an increasing
operator such that S{‘d(x, y) > 0Vx,yeXor S,dx,y) > 0Vx,y e X,
then A has a unique fixed point.
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Proof. We note that the sequence (A"x) is a Cauchy sequence. Indeed,

m m
d(A™"xg, A"xp) < ) d(A" 1 xg, A" xg) < > Susic1d(xo, Axg) =

=1 =1
n+m—1
= Z Sed (xg, Axg) — 0.

k=n
Let £ = lim A"x,. Then

d(£, AR) <d®, A" x) + d(A" xy, AR) <
<d(%, A" xp) + $1d(A"xp, %) — 0

so X is the required fixed point of A. a

The following Corollary 1 is a more or less known formulation of the Con-
traction Mapping Principle in the setting of E-metric spaces.

Corollary 1. Let E, X be as in Theorem 2. Let S: E, — E. be an increasing
operator and let A: X — X be an S-contraction.
Suppose that:

(i) fn€EL, lim f, = 0imply limSf, = SO;
(ii) there exists xo € X such that the series Y _ S"d(xo, Axp) is convergent.

" Then there exists # = lim A"xg and X = AX. Moreover, if S"d(x;y) — 0
Vx,y€X, then A has a unique fixed point.

Remark 1. Suppose that in the Corollary 1, E is an ordered Banach space with
the norm convergence and S: E — E. is the restriction to E of a continuous
linear operator S: E — E.

If the spectral radius of § is less than 1, then (ii) holds for every x € X, as
consequence of the root test for the serie ) $"d(x, Ax).

Remark 2. In the Corollary 1, the hypothésis $"d(x, y) > 0Vx,ye X is
essential for the uniqueness. As counterexample one can think to A and S equal
to the identity map.

The Corollaries 2 and 3 below exemplify the possibility to absorb in the
setting of E-metric spaces, fixed points theory in uniform spaces.
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Corollary 2. (Theorem 2 of [1]) Let X be a Hausdorff sequentially complete
uniform space with uniformity defined by a satured family of semimetrics (d;)icr,
I being an index set. Let & = (F;);e; be a family of functions F;: Ry — R,
with the properties:

(i) F; is monotone increasing and continuous from the right on Ry Vi € 1.
(ii) Fi(t) <tift >0and g: I — I is a map of the index set I into itself.
(iti) Vi €1 there exists a function F} in the family F such that

sup Fgn(iy (1) < F (1)

n>0

and F[*(t)/t is increasing.
Let A: X — X be a & -contraction on X, i.e.

di(Ax, Ay) < Fi(dgy(x,y)) Yiel.

Suppose that there exists an element xo € X such that

(iv) dgngy(x0, AxO) < p() <ocoVn. : '

Then A has at least one fixed point. If in addition we suppose that
(v) the sequence (dgn(;y(X, ¥))n>0 IS boundedVicl, Vx,yeX, ie.

dgngiy(x,¥) < q(x,y,i) <00, n=>0,

then the fixed point of a is unique.

Proof. We choose as metrizing space for X the space R’, endowed with the
pointwise operations, ordering and convergence. We define d: X x X — E,
and S: E4 — E respectively by the equalites

[d(x, Y)IGE) =di(x,y)

[S£1G) = Fi(f(g(0)).

Now, it is enough to show that the hypotheses of Corollary 1 are satisfied. We
proceed in three steps.

1. S is an increasing operator.
Indeed, let fi < f>. Then, Viel

[SA1E) = Fi(fi(g()) = Fi(f2(g())) = [Sf21().

2. fn€E,, limf, =0imply limSf, = SO.
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Indeed,
0 <[$fn]10G) = Fi(fn(g(i))) < fx(g(i)) = 0 =[S01().

3. > 8"d(xq, Axg) is a convergent series.
Indeed, . o

[S"d(x0, Ax0)1(i) = Fi(Fgy . .. Fgr1(y(dgngiy (%0, AX))...) <
= Fi(Fgiy - - Fgmiy () ..) < F™ (p(i)),
so it is enough to show that o
D OFT(p()) < oo
If there exists n such that F*"(p(i)) = O, the series is really a finite sum.
Otherwise, from (iii) and (ii) we have ‘
e _ FEPG) _ Frp6)
F(p@)) F*(p@) — p@)
and so, by the ratio test, we are done.j
If, in addition, the hypothesis (v) is satisfied, then
[$7d(x, »)I() = Fi(Fgi) (... [dgriy(x,¥))...)) <
< Fi(Feiy(...q(x,¥,1))..)) < F"(g(x, y,1))

and the last sequence converges to 0 from hypothes'es (i) and (ii). O

Corollary 3. Let X be as in Corollary 2. Let & = (F;)ie;r be a family of
functions F;: Ry — R with the properties:

1

(i) F; is monotone, increasing and continuous from the right on R,, Yi € I.
Let A: X — X be a generalized contraction, i.e.
(ii) Yiel, Yn €N, there exists F; , in the family & such that

di(A"x, A"Y) < Fin(dgim(x,y)), g:IxN — I.
Suppose that there exists an element xo € X such that
dyim (%0, A%o) < p(i) <00(n=0,1,...) and Y F;a(p(i)) < oo.

Then A has at least one fixed point.
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Proof. Put [S, f1(i) = F; »(f(g(i, n))).
Following the line of the proof of Corollary 2, it is easy to show that the hypothe-
ses of Theorem 2 are satisfied. O

In the next theorem, we prove an abstract nonlinear Cauchy-Kowalewski
Theorem in a scale of Banach spaces with conditions similar to those used by
Zabrejko-Makarevich [11].

Theorem 3. (weak singularity) Let (B, |||ls)seo0,1[ be afamily of Banach spaces
such that r > s implies B, C B, and ||||s < |\li,-

Let B = NB; be the intersection of the spaces B;. Assume that a given function
f:10, T]1 x B — B satisfies the following conditions:

(i) For every pair of numbers r, s such that 0 <s <r < 1, f is a continuous
mapping from the [0, T] x B,-topology to the Bs-topology.
(i) 1 f@ x)—f@, x)lls <clr—s5)"¢llxy—x2ll, Yr >s(ceR,0<a <1)

Then the Cauchy Problem

x' = f(, x)
CP) { x(0) = xp

has a unique continuously differentiable solution x:[0, T] — B.

Proof. We set

(@) E = ROTIXOI equipped with the pointwise algebraic operations and
order. The linear convergence on E useful in the sequel is the following: z, — z
if and only if Vs, z,(¢, s) — z(¢, s) uniformly in ¢.

(b) X = {x:[0, T]1 > B continuous as B;-valued function, Vs}.
d:XxX — E, defined by [d(x,y](, s)=]|x()—y®)ls-

(¢) A: X — X defined by
A0O =x0+ [ F@.xw)av
0
(d) S:d(XxX) — E, defined by

(S2)(,s) = cinf(r — s)—"/ z(v,r)dv.
r>s 0

First we note that:
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The E-metric space X is sequentially complete. Indeed, if (x,) is a Cauchy
sequence in X, i.e. |[x,(t)—x, (t)||s — O uniformly in r for every fixed s € [0, 1[,
then there exists limx, () =:x(¢t) in B, for every s. Moreover, the uniform
convergence in ¢ and the hypothesis ||[Is < |||l for s < r yield x € X.

From the definition of convergence in E, the nonlinear increasing operator

S is sequentially continuous in 0.
From the hypotheses (i) and (ii) it follows that the operator A is an §-

contraction.
Now we show that the series »_ S"d(x, y) is convergent for every x,y € X,
ie. > (S"d(x, y))(z,s) is a convergent series, uniformly in ¢ for every fixed s.

Indeed, if s < ry, then
(%) [Sd(x, y)I(t,5) < c(r1 — ) *M(r1)t
where M (r;) = max ||x(¢t) — y(@®)|l,,.
te[0,T]
In particular, from (x) it follows, for s < r; <ry,
[Sd(x, )I(t, r2) < c(ri —r) *M(r)t
and ,
[S%d(x, Y1, 8) < c(r2 — S)"“f [Sd(x, y)I(v, r2)dv <
0

< M) (1 =) (ra = ) 7°17/2!
And by induction, for every n € N and for every choice of s < r, < ... <1y,
we have

[S"d(x, M1t s) < "M @) (ri —r) ™ (ra —r3) ™ ... (ra — )™ /n!.
From the last inequality, if for every n we choice the scalars r; equidistributed,
(e.ri=s+@m—j+1)1—=5)/n, j=1,...,n)wehave

[S"d(x, I, s) < "M@E)n* (ri —s)"'t" /n!.

Since
lim([[S"d (x, )1, NI < lim ce(1 — )™ n® =0

for every s uniformly in ¢, the root test assures that the series Y S"d(x,y) is
convergent in E.

From Corollary 1 it follows that there exists a unique fixed point X of the operator
A and A"x — X forevery x € X. .

Of course x is the unique solutions of (CP) O
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