ON THE REGULARITY OF OPTIMAL CONTROL FOR A PARABOLIC SYSTEM OF ORDER 2m

ORNELLA FIODO - SALVATORE GIUGA

An optimal control problem for a parabolic operator of order 2m with the boundary conditions containing the control is considered. A regularity theorem for the parabolic problem and the regularity of the optimal control is proved.

Introduction.

In [1] M. GIURGIU studies an optimal control problem with quadratic cost functional for the equation $\Omega^p y(t,x)=0$ where $\Omega=\partial_t-\partial_x^2$ and $p\in N$ with same of the boundary conditions given by means of the solution of a linear differential equation system that contains the control u(t) with $u:[0,T]\to U$ $(T<+\infty;\ U=L^2(0,T;R^n))$. Furthermore in [1] it is proved that if data are continuous, then also the optimal control \widetilde{u} is continuous in the closed interval [0,T].

In [5] T.I. Seidman considers an optimal control problem with quadratic cost functional for the equation $\partial_t - Au = f$ where A is a second order uniformly elliptic operator, with the boundary condition containing the control Φ and states very strong regularity results, for the optimal control Φ_* in the open interval]0,T[.

Entrato in Redazione il 2 luglio 1991.

Work Supported by National Research Project of M.P.I. (40%) 90.

In the present paper, starting from the mentioned papers and making use of some results in [2], we have considered an optimal control problem with quadratic cost functional for the parabolic equation $\partial_t y = Ly$, where L is a strongly elliptic operator, having order 2m $(m \in N)$ in $]0,T] \times R^{n-1} \times R^+$ and, following [1], the boundary conditions containing the control are given by linear operators β satisfying assigned conditions. Besides, a regularity theorem is proved for the parabolic problem; this results allows us to study the regularity of the optimal control in the closed interval [0,T].

1. Setting of the problem.

Let X a Hilbert space; for every $\sigma \in N$, let us denote by: $-C^{(0)}([0;T];X)$ the space of the functions f that are continuous in [0,T], with values in X and norm:

$$|f|_{C^{(0)}([0,T];X)} = \max_{t \in [0,T]} |f|_X;$$

 $-C^{(\sigma)}([0,T];X)$ the space of the functions f such that

$$\partial_t^s f(t) \in C^{(0)}([0,T];X) \quad \forall s \in \{0,\ldots,\sigma\},$$

with norm:

$$|f|_{C^{(\sigma)}([0,T];X)} = \sum_{s=0}^{\sigma} |\partial_t^s f|_{C^{(0)}([0,T];X)};$$

 $-L^2(0,T;X)$ the space of the functions f that are Bochner measurable on]0,T[, with values in X, such that

$$\int_0^T |f(t)|_X^2 dt < +\infty$$

with norm

$$|f|_{L^2(0,T;X)} = \left[\int_0^T |f(t)|_X^2 dt\right]^{\frac{1}{2}};$$

 $-H^{\sigma}(0,T;X)$ is the space of the functions $f \in L^{2}(0,T;X)$, differentiable of order σ in $L^{2}(0,T;X)$, equipped with the norm:

$$|f|_{H^{\sigma}(0,T;X)} = \sum_{s=0}^{\sigma} |\partial_t^s f|_{L^2(0,T;X)}.$$

 $-H^{\sigma}(\Omega)$ is the ordinary Sobolev space with $\Omega=R^{n-1}_{x'}\times R^+_{x_n}$ for every $\sigma\in N$. $-H^{\sigma}_0(\Omega)$ is the completion of $C^{\infty}_0(\Omega)$ with respect to the norm in $H^{\sigma}(\Omega)$.

Let us consider the following parabolic problem:

(1.1)
$$\begin{cases} \partial_t y = Ly, & (t, x) = (t, x', x_n) \in]0, T] \times \Omega \\ y(0, x) = x^p y_0(x), & x \in \Omega \\ \partial_{xn}^{j-1} y(t, (x', 0)) = \gamma_j(x') t^q(\beta u)_j, \\ (t, x') \in]0, T] \times R_{x'}^{n-1}, j \in \{1, \dots, m\}. \end{cases}$$

where:

$$i_1$$
) $L = L(x, \partial_x) = (-1)^m \sum_{|\alpha|=m} \partial_x^{\alpha} a_{\alpha}(x) \partial_x^{\alpha}$ $(\partial_x = \partial/\partial x)$

is a strongly elliptic operator in $\overline{\Omega}$, with real coefficient. We also assume that, for every multiindex β , the functions $\partial_x^{\beta} a_{\alpha}(x)$ are convergent for $|x| \to +\infty$ and:

$$\sum_{|\alpha|=m} \int_{\Omega} a_{\alpha}(x) \partial_{x}^{\alpha} \phi(x) \overline{\partial_{x}^{\alpha} \phi(x)} \, dx \le 0 \qquad \forall \phi \in H_{0}^{m}(\Omega)$$

- i_2) p is nonnegative real and $q > \frac{1}{2}$;
- i_3) $\gamma(x') = [\gamma_j(x')]$ is a $1 \times m$ matrix with values in $\mathcal{S}(R_{x'}^{n-1})$;
- i_4) $\beta = [\beta_{i,j}]$ is a $m \times k$ matrix, whose elements $\beta_{i,j}$ are continuous linear operators: $L^2(0,T) \to H^2(0,T)$, and their adjoint $\beta_{i,j}^*$ are also linear and continuous: $L^2(0,T) \to H^1(0,T)$;
- $(i_5) (1+x_n^2)^{p/2} y_0 \in L^2(\Omega);$
- u_{i_0} the control u = u(t) belongs to $L^2(0, T; \mathbb{R}^k)$.

Such hypotheses ensure (see [6]) that the problem (1.1) has a unique solution y_u in $C^{(0)}([0,T];L^2(\Omega)) \cap L^2(0,T;H_0^m(\Omega))$, depending of the data with continuity.

The cost J(u) is the functional:

$$(1.2) J(u) =$$

$$= \int_0^T dt \int_\Omega dx \int_\Omega K_1(t, x, \varepsilon) [(y_u(t, x) - y_T(t, x))(y_u(t, \varepsilon) - y_T(t, \varepsilon))] d\varepsilon$$

$$+ \int_\Omega dx \int_\Omega K_2(x, \varepsilon) [(y_u(T, x) - \omega_T(x))(y_u(T, \varepsilon) - \omega_T(\varepsilon))] d\varepsilon +$$

$$+ \int_0^T \langle E(t)u(t), u(t) \rangle dt + \int_0^T \langle H(t)\beta u(t), \beta u(t) \rangle dt,$$

where <, > denotes the scalar product and:

 j_1) the kernels:

$$K_1(t, x, \varepsilon) \in C^{(0)}([0, T] \times \Omega \times \Omega) \cap C^{(1)}([0, T]; L^2(\Omega \times \Omega)),$$

$$K_2(x, \varepsilon) \in C^{(0)}(\Omega \times \Omega) \cap H^{2m}(\Omega \times \Omega) \cap H_0^m(\Omega \times \Omega),$$

are positive semi-definite and symmetric in x and ε .

- j_2) E(t) is a $k \times k$ simmetric positive definite matrix, whose elements are in $C^{(1)}[0,T]$; H(t) is a $m \times m$ symmetric positive semi-definite matrix, whose elements are in $C^{(0)}[0,T]$.
- j_3) the target state $y_T(t,x)$ and the target trajectory $\omega_T(x)$ are in

$$C^{(0)}([0,T];L^2(\Omega))$$
 and $L^2(\Omega)$

respectively.

The present optimal control problem consists in determining a function $\widetilde{u} \in L^2(0,T;R^k)$ (the optimal control) such that $J(\widetilde{u}) \leq J(u)$ for every $u \in L^2(0,T;R^k)$.

The following lemma (see [2]) holds

1.1. In the hypotheses i_1 to i_6 and j_1 to j_3 the functional J(u) is strictly convex, Gateaux differentiable, coercive and lower semicontinuous in $L^2(0,T;\mathbb{R}^k)$.

It follows that (see [2], [4]):

1.2. In the hypotheses of lemma 1.1 there exist a unique optimal control. Furthermore the control $\tilde{u} \in L^2(0,T;\mathbb{R}^k)$ is optimal if and only if:

$$(1.3) \qquad \int_{0}^{T} dt \int_{\Omega} dx \int_{\Omega} K_{1}(t, x, \varepsilon) (y_{u}(t, x) - y_{\tilde{u}}(t, x)) (y_{\tilde{u}}(t, \varepsilon) - y_{\tilde{u}}(t, x)) d\varepsilon + \int_{\Omega} dx \int_{\Omega} K_{2}(x, \varepsilon) (y_{u}(T, x) - y_{\tilde{u}}(T, x)) (y_{\tilde{u}}(T, \varepsilon) - y_{\tilde{u}}(T, x)) d\varepsilon + \int_{0}^{T} \langle E(t)\widetilde{u}(t), u(t) - \widetilde{u}(t) \rangle dt + \int_{0}^{T} \langle H(t)\beta\widetilde{u}(t), \beta(u - \widetilde{u})(t) \rangle dt = 0$$

for every $u \in L^2(0,T; \mathbb{R}^k)$.

2. A regularity theorem for the parabolic problem.

Let us consider the problem:

(2.1)
$$\begin{cases} \partial_t y(t,x) = Ly(t,x) + f(t,x) & (t,x) \in]0,T] \times \Omega \\ y(0,x) = y_0(x) \\ \partial_{x_n}^{j-1} y(t,x',0) = 0 & j \in \{1,\ldots,m\} \end{cases}$$

Let E denote the space of the couples $(\rho(t,x),\theta(x))$ such that:

$$ho(t,x) \in H^1(0,T;L^2(\Omega))$$

$$\theta(x) \in H^m_0(\Omega)$$

$$L\theta(x) \in L^2(\Omega)$$

and τ operator:

$$\tau: (\rho,\theta) \in E \longrightarrow \tau(\rho,\theta) = \rho(0,x) + L\theta(x) \in L^2(\Omega) \, .$$

Besides, U denote the space $C^{(0)}([0,T];L^2(\Omega))\cap L^2(0,T;H_0^m(\Omega))$. Let us observe that from [2], (see th.1.1) it follows that problem (2.1) is uniquely solvable in U; let us denote the solution by $Y[f, y_0]$.

By the same theorem one gets

$$(2.2) (f, y_0) \in E$$

then

(2.3)
$$Y[f, y_0] \in C^{(0)}([0, T]; H^{2m}(\Omega))$$

$$(2.4) \partial_t Y[f, y_0] \in U$$

(2.5)
$$\partial_t Y[f, y_0] - Y[\partial_t f, \tau(f, y_0)].$$

Let us now prove the following regularity theorem.

Theorem 2.1. If $a \sigma \in N$ exists, such that

$$(2.6) \quad \begin{cases} \partial_t^i L^j f(t,x) \in L^2(0,T;L^2(\Omega)) & \forall i,j \in N_0 \quad i+j \le \sigma \\ \partial_t^i L^j f(t,x) \in C^{(0)}([0,T];H_0^m(\Omega)) & \forall i,j \in N_0 \quad i+j \le \sigma-1 \end{cases}$$

(2.7)
$$\begin{cases} L^{j}y_{0}(x) \in L^{2}(\Omega) & \forall j \in N_{0} \quad j \leq \sigma \\ L^{j}y_{0}(x) \in H_{0}^{m}(\Omega) & \forall j \in N_{0} \quad j \leq \sigma - 1 \end{cases}$$

then

(2.8)
$$\partial_t^s Y[f, y_0] \in C^{(0)}([0, T]; H^{2m}(\Omega)) \quad \forall s \le \sigma - 1$$

(2.9)
$$\partial_t^s Y[f, y_0] \in U \qquad \forall s \le \sigma.$$

Proof. Let now observe that the hypotheses imply (2.2), and therefore, (2.3) and (2.4), i.e. the conclusion for $\sigma - 1$. If $\sigma > 1$, the hypotheses imply (2.2) and (2.5), too, where the couple $(\partial_t f, \tau(f, y_0))$ belongs to E. Relations (2.3) and (2.4) hold also with $\partial_t Y[f, y_0]$ instead of $Y[f, y_0]$ and this implies the conclusion for $\sigma - 2$. It is easy to see that (2.6) and (2.7) allow to apply such a procedure exactly $\sigma - 1$ times. The theorem follows.

Let us now consider the problem

(2.10)
$$\begin{cases} \partial_{t}y = Ly & (t,x) \in]0,T] \times \Omega \\ y(0,x) = x_{n}^{p} y_{0}(x) & x \in \Omega \\ \partial_{x_{n}}^{j-1} y(t,(x',0)) = t^{q} v_{j}(t,x') \\ j \in \{1,\ldots,m\} \ (t,x') \in]0,T] \times R^{n-1} \end{cases}$$

where ρ and q are nonnegative reals. The following corollary holds.

Theorem 2.2. If there exists $\sigma \in N$ such that :

$$(2.12) q > \sigma + \frac{1}{2}$$

$$(2.13) v_j(t, x') \in H^{\sigma+1}(0, T; S(R^{n-1}))$$

$$(2.14) (1+x_n^2)^{p/2}y_0(x) \in H^{2m}(\Omega)$$

then the problem (2.10) admits a unique solution that belongs to

$$C^{(\sigma)}([0,T];L^2(\Omega)\cap C^{(\sigma-1)}([0,T];H^{2m}(\Omega))$$
.

Proof. By putting the following

$$\overline{y}(t,x) = t^q \sum_{j=1}^m x_n^{j-1} \frac{e^{-x_n^2}}{(j-1)!} v_j(t,x')$$

(2.15)
$$(\partial_t - L)\bar{y}(t,x) = t^{q-1}g(t,x)$$

$$(2.16) y = y^* + \bar{y}$$

the problem (2.10) is reduced to

(2.17)
$$\begin{cases} \partial_t y^* = Ly^* - t^{q-1}g(t,x) \\ y^*(0,x) = x_n^p \ y_0(x) \\ \partial_{xn}^{j-1} y^*(t,(x',0)) = 0 \qquad j \in \{1,\dots,m\} \end{cases}$$

the hypotheses (2.11) - (2.14) allow to apply th. 2.1 to the problem. We have

$$(2.18) y^* \in C^{(\sigma)}([0,T];L^2(\Omega)) \cap C^{(\sigma-1)}([0,T];H^{2m}(\Omega)).$$

The mentioned hypotheses also guarantee that

$$\overline{y}(t,x) \in C^{(\sigma)}([0,T];L^2(\Omega)) \cap C^{(\sigma-1)}([0,T];H^{2m}(\Omega));$$

then the conclusion from (2.16).

Remark. If p is an integer, the result holds again, provided that (2.11) is replaced by

$$(2.19) p \ge 2m\sigma - m.$$

3. Adjoint state and implicit representation of the optimal control.

In order to represent the optimal control, let us put

$$f(t,x) = -\int_{\Omega} K_1(t,x,\varepsilon)(y_{\tilde{u}}(t,\varepsilon) - y_T(t,\varepsilon)) d\varepsilon$$

(3.1)
$$p_T(x) = -\int_{\Omega} K_2(x,\varepsilon) (y_{\tilde{u}}(T,\varepsilon) - \omega_T(t,\varepsilon)) d\varepsilon$$

and consider the problem

(3.2)
$$\begin{cases} -\partial_t p(t,x) = Lp(t,x) + f(t,x) & a.e. \quad (t,x) \in [0,T[\times \Omega]] \\ p(T,x) = p_T(x) & a.e. \quad x \in \Omega \\ \partial_{x_n}^{j-1} p(t,(x',0)) = 0 & j = 1,\dots, m \end{cases}$$

where $y_{\tilde{u}}(t, x)$ is the solution of the problem (1.1) corresponding to the optimal control \tilde{u} . By corollary 2.2, for $\sigma = 1$, $y_{\tilde{u}}(t, x)$ belongs to

$$C^{(1)}([0,T];L^2(\Omega))\cap C^{(0)}([0,T];H^{2m}(\Omega))$$
.

This property is inherited by the function f(t, x), introduced in (3.1), in virtue of the hypotheses j_1 and j_3).

From th. 2.1 it follows that the problem (3.2) has a unique solution $p_{\tilde{u}}$ in $C^{(1)}([0,T];L^2(\Omega))\cap C^{(0)}([0,T];H^{2m}(\Omega))$ and in $H^{(1)}(0,T;H_0^m(\Omega))$. Let us now consider the following differential operators of order 2m-j

$$Q_j(x',\partial_x) = \sum_{|\alpha|=m} (-1)^{m-j} \partial_x^{\alpha-j} a_\alpha(x',0) \partial_x^\alpha \qquad j = 1, \dots, m.$$

Applying the notation:

(3.3)
$$w_j(t, x') = \gamma_j(x')Q_j(x', \partial_x)p_{\tilde{u}}(t, (x', 0))$$
 $j = 1, ..., m$

we get $w_j(t, x') \in C^{(0)}([0, T]; L^1(\mathbb{R}^{n-1}))$, for every $j \in \{1, \dots, m\}$. With the further notations:

(3.4)
$$w_j(t) = (-1)^j \int_{R^{n-1}} w_j(t, x') dx'$$
, $w(t) = \begin{bmatrix} w_1(t) \\ \vdots \\ w_m(t) \end{bmatrix}$

we are now able to say that $w(t) \in C^{(0)}([0,T]; \mathbb{R}^m)$. The following proposition holds

Theorem 3.1. Under the same hypotheses of th.1.2 the optimal control satisfies the functional equation:

$$\widetilde{u}(t) = E^{-1}(t) \left[-\beta^*(t^q w(t) + H(t)\beta \widetilde{u}) \right].$$

Proof. Let us recall that, if it results:

$$p(t,x), y(t,x) \in C^{(0)}([0,T]; H^{2m}(\Omega)) \cap C^{1}([0,T]; L^{2}(\Omega))$$

 $\partial_{x_{n}}^{j-1} p(t,x',0) = 0 \quad \forall j \in \{1,\ldots,m\}$

then the Green's formula holds

(3.6)
$$\int_{\Omega} dx \int_{0}^{T} p(t,x)(\partial_{t} - L(x,\partial_{x})y(t,x)) + y(t,x)(\partial_{t} + L(x,\partial_{x})) \cdot p(t,x)dt = p(T,x)y(T,x) - p(0,x)y(0,x)$$
$$-\sum_{j=1}^{m} (-1)^{j-1} \int_{0}^{T} dt \int_{R^{n-1}} \partial_{x_{n}}^{j-1} y(t,(x',0))Q_{j}(x',\partial_{x})p(t,(x',0)) dx'.$$

So the formula (3.6) applies to the couple $(p_{\tilde{u}}, y_u - y_{\tilde{u}})$. By (3.1), (3.3) and (3.4) and problems (1.1) and (3.1), we get

$$\begin{split} \int_{\Omega} dx \int_{0}^{T} dt \left(y_{u}(t,x) - y_{\tilde{u}}(t,x) \right) \int_{\Omega} d\varepsilon \ K_{1}(t,x,\varepsilon) (y_{\tilde{u}}(t,\varepsilon) - y_{T}(t,\varepsilon)) = \\ = - \int_{\Omega} dx \int_{\Omega} K_{2}(x,\varepsilon) (y_{\tilde{u}}(T,\varepsilon) - \omega_{T}(\varepsilon)) (y_{u}(T,x) - y_{\tilde{u}}(T,x)) d\varepsilon \\ + \sum_{i=1}^{m} \int_{0}^{\tau} t^{q} ((\beta u)_{j}(t) - (\beta \widetilde{u})_{j}(t)) w_{j}(t) dt \,. \end{split}$$

Therefore, by using the optimality necessary and sufficient condition (1.3), we obtain, for every $u \in L^2(0,T;\mathbb{R}^k)$

$$\int_0^T \langle E(t)\widetilde{u}(t), u(t) - \widetilde{u}(t) \rangle dt +$$

$$+ \int_0^T \langle H(t)\beta\widetilde{u}(t), \beta(u - \widetilde{u})(t) \rangle dt +$$

$$+ \sum_{j=1}^{m} \int_{0}^{T} t^{q} ((\beta u)_{j}(t) - (\beta \widetilde{u})_{j}(t)) w_{j}(t) dt = 0.$$

Thus, for every $u \in L^2(0,T;\mathbb{R}^k)$

$$\int_0^T \langle u(t) - \widetilde{u}(t), E(t)\widetilde{u}(t) + \beta^*(t^q w) + \beta^*(H(t)\beta\widetilde{u}(t)) \rangle dt = 0$$

and, u(t) being arbitrary, the conclusion follows.

4. Regularity of the optimal control.

In this section we shall use (3.5) in order to study the regularity of $\tilde{u}(t)$. The results are expressed in the following theorem

Theorem 4.1. In the hypotheses $i_1) \rightarrow i_6$ and $j_1) \rightarrow j_3$, if there is $\sigma \in N$ such that:

- i_2') $p \geq 2m\sigma$ and $q > \sigma + \frac{1}{2}$
- i_4') $\forall s \in \{0, ..., \sigma\}$ the operators $\beta_{i,j}$ and $\beta_{i,j}^*$ are linear and continuous, respectively: $H^s(0,T) \to H^{s+2}(0,T)$ and $H^s(0,T) \to H^{s+1}(0,T)$;
- i_5') $(1+x_n^2)^{p/2}y_0 \in H^{2m}(\Omega)$ $p \ge 2m\sigma$;
- j'_1) for every $i, j \in N_0$ it is:

$$\begin{split} \partial_t^i L^j(x,\partial_x) K_1(t,x,\varepsilon) &\in C^{(0)}([0,T];L^2(\Omega\times\Omega)) \qquad i+j \leq \sigma \\ \partial_t^i L^j(x,\partial_x) K_1(t,x,\varepsilon) &\in C^{(0)}([0,T];H_0^m(\Omega\times\Omega)) \qquad i+j \leq \sigma-1 \\ L^j(x,\partial_x) K_2(x,\varepsilon) &\in L^2(\Omega\times\Omega) \qquad j \leq \sigma \\ L^j(x,\partial_x) K_2(x,\varepsilon) &\in H_0^m(\Omega\times\Omega) \qquad j \leq \sigma-1; \end{split}$$

- (j_2') the elements of the matrices E(t) and H(t) belong to $C^{(\sigma)}([0,T])$ and $C^{(\sigma-1)}([0,T)]$ respectively;
- j_3') it is: $y_T(t,\varepsilon) \in C^{(\sigma)}([0,T];L^2(\Omega))$ and $\omega_T(\varepsilon) \in L^2(\Omega)$, then the optimal control $\widetilde{u}(t)$ belongs to $H^{(\sigma)}(0,T)$.

Proof. Let us recall the functional equation of the optimal control

(3.5)
$$\widetilde{u}(t) = E^{-1}(t) \left[-\beta^* (t^q w(t) + H(t)\beta \widetilde{u}) \right].$$

As $\widetilde{u}(t) \in L^2(0,T)$, by j_2) and i_4), it is $H(t)\beta \widetilde{u} \in C^{(0)}[0,T]$; besides, recalling Section 3, $w(t) \in C^{(0)}[0,T]$ from which, by i_4) and j_2), we get $\widetilde{u} \in H^1(0,T)$. So, the conclusion holds for $\sigma = 1$.

Let us suppose $\sigma > 1$.

As $\widetilde{u} \in H^1(0,T)$ by i_4' the functions $v_j(t,x) = \gamma_j(x')(\beta \widetilde{u})_j$ belong to $H^3(0,T;S(R^{n-1})) \ \forall j \in \{1,\ldots,m\}$; this implies

$$\partial_t^i v_i(t, x') \in H^2(0, T; S(\mathbb{R}^{n-1}))$$

for every $i \le 1$. As $y_0(x)$ fulfils i'_6 , by i'_2 and corollary 2.2, we get

$$y_{\tilde{u}} \in C^{(2)}([0,T]; L^2(\Omega)) \cap C^{(1)}([0,T]; H^{2m}(\Omega)).$$

This, together with hypotesis j'_1), implies by 2.1

$$p_{\tilde{u}} \in C^{(1)}([0,T]; H^{2m}(\Omega))$$

and so $w(t) \in C^{(1)}[0, T]$.

Proceeding in a similar way, we have $H(t)\beta \widetilde{u} \in C^{(1)}[0,T]$, so that, by (3.5), \widetilde{u} belongs to $H^2(0,T)$, i.e. the conclusion for $\sigma=2$.

In virtue of the hypotheses, the procedure can be applied $\sigma-1$ times. Therefore the theorem follows.

REFERENCES

- [1] M. Giurgiu, A non-homogeneous feedback solution of a linear quadratic problem for boundary control of p-caloric equation, $p \ge 1$, Rev. Roum: Math. Pures et Appl. Tome XXI n. 4, pp. 401-427, Bucarest 1976.
- [2] S. Giuga, Su un problema di controllo ottimale relativo ad un operatore parabolico di ordine 2m, Rend. Acc. Sc. Fis. Mat. IV vol. LII/2 Napoli (1985).
- [3] K. Yosida, Functional Analysis, Springer N.Y. (1966).
- [4] J.L. Lions, Contrôle optimal de systèmes gouvernès par des èquations aux dèrivées partielles, Dunod Gauthier-Villars, 1968.
- [5] T.I. Seidman, Regularity of optimal boundary controls for parabolic equations I Analyticity, Siam J. Control and Optimization n. 3 (1982).
- [6] H. Tanabe, Equation of Evolution (English translation), Pitman, London (1979).

Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" via Mezzocannone, 8 80134 NAPOLI