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POTENTIAL THEORY FOR STATIONARY SCHRODINGER
OPERATORS: A SURVEY OF RESULTS
obtained with non-probabilistic methods

MARCO BRAMANTI

In this paper we deal with a uniformly elliptic operator of the kind:
Lu = Au + Vu, where the principal part A is in divergence form, and V'
is a function assumed in a "Kato class”. This operator has been studied
in different contexts, especially using probabilistic techniques. The aim
of the present work is to give a unified and simplified presentation of the
results obtained with non probabilistic methods for the operator L on a
bounded Lipschitz domain. These results regard: continuity of the solutions
of Lu = 0; Harnack inequality; estimates on the Green’s function and L-
harmonic measure; boundary behavior of positive solutions of Lu = 0, in
particular a "Fatou’s theorem”.
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6. Potential theory for L

7. Analytic and probabilistic approaches: a comparison

A. Appendix: the operator with a drift term

0. Introduction.

Object and plan of the work. In this work, we are interested to study
uniformly elliptic operators with principal part in divergence form and a term of
order zero, that is :

Lu=Au+Vu = —(a;j(2)us, )z, + V(z) - u

where L is supposed defined on a bounded domain of ®". The operator A
(principal part operator) has been extensively studied, under the only assumptions
of measurability and boundedness of coefficients and uniform ellipticity:

ATHEP < aij(2)&:€5 < M€

for some positive A, every £ € R™, a.e. 2.

Among the most important results which have been established for the
operator A we recall the works [11], [21], [19], [20], [18], [5]. We shall discuss
later these results. It is generally true that, under suitable assumptions on the
function V, similar theorems to those proved for A also hold forL. A quite
natural assumption on V, from the standpoint of variational theory of elliptic
cquations on bounded domains, is that V € £7() for some p > n/2. (See
for instance [25]). In many works of the 80’s (see [2], [24], [30], [6], [9]) the
operator L has been studied under weaker assumption on V'; namely, a theory
for the operator L can be developped when V is assumed in a Kato-Stummel
class, properly containing £7(Q) for p > n/2. (We shall define this class in
section 1). Some reasons for this choice of the space where V is assumed will
be discussed later in this introduction. Now we present a table of some results
obtained for A and subsequently for L, which we shall deal with in this paper.
(The content of the theorems will be expounded in the following).
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Kind of results. Who obtained it for the operator L = A ... ...andwhofor L = L.

Continuity of solutions of Lu = 0.

De Giorgi '57-Nash ’58-Moser "60 Chiarenza-Fabes—

(see [11], [21}, [19)) Garofalo '86 (see [6])
Harnack inequality.

Moser ’61 (see [20]) the above work*

Estimate on the Green’s function;

regularity of boundary points.
Littman—Stampacchia—Weinberger '63 Cranston—Fabes—
(see [18D) » Zhao ’86 for Lipschitz

domains (see [9])*

Boundary behavior of positive solutions
of Lu = 0; Fatou’s theorem (for Lipschitz domains).

Caffarelli-Fabes—-Mortola—-Salsa ’83 the above work
(see [5])

* partial results in the same direction previously obtained in [2], [30] and others.

We note that some of these results, namely the continuity estimate and
Harnack inequality, have been extended to operators sum of squares of vector
fields plus a potential in a Kato class. (See [8], [7]).

Both the work [9] and most of the previous ones on the operator L, such
as [2], [24], [30] are essentially probabilistic. On the other hand, [6] follows
typically analytic methods, based on a real variable approch. Different analytical
proofs of similar results can be found also in [15], where Hamack inequality
is discussed, and [23], where a continuity estimate is stated, to get Hamack
inequality. Both the works consider operators with principal part A = —A.
A first aim of the present paper is to give a unified and, as far as possible,
self-contained exposition of the above results for the operator L, obtained in a
nonprobabilistic way. In [3] I have already shown how one can get the results
of [9] without any probabilistic formalism: in particular, the proof of the basic
~ estimate on the Green’s function (see thm. 4.1) appears quite simplified. (The
meaning of this simplification will be better explained in section 7, where a
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comparison between analytical and probabilistic approch is drawn). Therefore
the present paper is mostly based on the two nonprobabilistic works [6] and [3]
™).

Coupling together the results of these papers allows further simplifications,
which are the main contribution of this work; let me explain them here. The
strategy used in [6] to obtain a Hamack inequality for positive solutions of
Lu = 0 and the continuity of any solution of Lu = 0 is the following:

1**step. Estimate from above on sup |u| + estimate from below on inf u =
Hamack inequality.

2™4step. Hamack inequality = Continuity of the solutions.

The line we will follow here is: ,

1%*step. Estimate from above on sup |u| = Continuity of the solutions.

2"%step. Once that continuity of the solutions is know, Harmmack inequality
follows from the estimate on L-harmonic measure, a result which is established
in order to study boundary behavior of positive solutions.

So I prove the continuity result in.a more direct way than [6], and simplify
the proof of Harnack inequality, bypassing the “estimate from below” which, in
[6], involves a “reverse Holder inequality” for the Green’s function and some
properties of the A, classes of weight functions.

The plan of the works is the following. Section 1 contains introductory
material: some definitions and known results, a brief outline of the properties of
Kato class, the variational formulation of Dirichlet’s problem for L, existence of
the Green’s function for L. Section 2 presents some local estimates proved in [6]
(which represent, in that work, “'the first half” of the proof of Harnack inequality).
In section 3 we derive from these facts continuity of the solutionsof Lu = 0, and
obtain an estimate for the local modulus of continuity of « (i.e. we get in other
way the continuity results of [6]). The next two section are based on [3]. Section 4
deals with the Green’s function G',: we present an analytical proof of the estimate
comparing the Green’s functions for A and L; then we discuss some regularity
properties of G'r,. In section 5 we study Dirichlet’s problem for I when the datum
is a (continuous) function defined only on the boundary. This leads to introduce
the notion of L-harmonic measure; then we prove that harmonic measures for A
and L are comparable. From this fact we derive, in section 6, Harnack inequality
and some results about boundary behavior of positive solutions of Lu = 0, i.e.
we transfer to the operator L properties which, by [5], are known to hold for the
operatorA. In the last section we make some remarks about the assumptions of
this work and compare probabilistic "language” and methods with analytic ones.

(!) The proofs of the results taken from these works are here in general omitted; only
a brief sketch of them is given, to make understandable the general line of the work.
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Motivation. What follows is a brief discussion of some of the reason for
choosing the Kato class K(€2) as a suitable class for V. I start by recalling the

phisical context from which the study of our operator arises.
In quantum mechanics the evolution of the state of a system is described
by the Schrodinger equation, which, by a suitable choice of units, can be written

as:

i ik

ot

where H is the Hamiltonian operator of the system and the unknown function
is a probability distribution. For istance, for a single particle of mass one, it is:

= Hy

H = —lA +V
2
where V is the potential energy of the particle. The eigenfunctions of H in £?
represent the stationary states of the system; this is the reason why H, and by
extension our operator L, is usually called stationary Schriodinger operator.
The basic mathematical property which, in quantum theory, the operator

H is requested to satisfy (as any other operator representing an observable’)
is selfadjointness, in the Hilbert space sense. To prove selfadjointness of a
Hamiltonian operator is a delicate problem which has been treated in many
works, and solved under assumptions on V' of increasing generality. (See for
instance [16], [17]). It is in this frame that K () naturally appears as a class of
admissible potentials” for a Schrodinger operator.
Kato-Stummel classes first appear in literature in [28]; their properties are then
studied in [22] (where they are not explicitely defined). The single class which
we will simply refer to as “the Kato class” appears in [17], where selfadjointness
of L is proved for this class of potentials, and is extensively studied, for instance,
in [2], [24].

~ Insection 11 shall give the definition of K (2) and discuss a few properties
of this class which will be useful in the following. Here I want to point out just

an example:
if V' is a central potential having at the origin a singularity of the kind:

V(r)=r"?logr|™'¢ fore>0

then if B is a small ball centred at the origin, V' lies in K ( B), while it does not
belong to any LP(B), forp > n/2.

However, to be able to handle potentials with strong singularities is not the
only reason (or the most important one) to choice the Kato class as a suitable one.
One can say that this class is natural under different regards. In [1], for istance,
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properties of exponential decay in R ™ or, more generally, on unbounded domains,
are established for the eigenfunctions of some Schrddinger-type operators, by
assuming V in the Kato class. In [2] it is proved that the condition V € K (Q)
is, in a certain sense, necessary and sufficient in order to a ’strong Hamack
inequality” may hold for the operator H = -—%—A + V. In [24] LP properties
of the Scrddinger semigroup relative to the same operator H are discussed. The
present work itself gives one more example of the naturalness of assuming V'
in K(Q2), in connection to the use of the Green’s function for studying local
properties of the solutions of Lu = 0. .

Finally, just a remark about the principal part operator. It has to be said that
a motivation from quantum mechanics to replace — %A with A appears, up to
now, rather improbable. However, thanks to the results of [18], [5], and theorem
1.6 (taken from [9]), this generalization is not troublesome, from a mathematical
point of view. '

Acknowledgements. I am grateful to prof. S. Salsa who constantly guided
me in this work and made me enjoy this matter. I also wish to thank prof. E.
Fabes for some helpful discussions.

1. Kato class, Dirichlet’s problem and Green’s function.

Let §2 be a bounded Lipschitz domain of R™ (n > 3). This means that there
exists a pair of positive numbers r, and M such that for every z € 012, local
coordinates can be selected so that B(z,ry) N §Q is the graph of a Lipschitz
function ¢ with |Dy| < M. The constants ro and M determine what will
be called the Lipschitz charachter of Q. The operator A is supposed to have
bounded, measurable, real valued coefficients a, j- We also suppose a;; = aj;
and A uniformly elliptic. So there is a positive constant ) such that

ATHER < aij(2)&i€; < AE|* forevery £ € R™, forae. z € Q).

Let us now define the Kato class k().

K(Q)= {feﬁlloc(ﬂ) : lim sup / Mdy = O} .

-2
r—0tzeR® JQNB(z,r) l(l? - yln

IfVeK(Q),put:

V)l
T)= sup/ — dy.
77( ) z€R* JQNB(z,r) ’x_y'n 2 y
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We shall call n "the Katonormof V" . If wewrite V = V+ -V~ ,with V' +,
V'~ nonnegative, we shall denote by 1~ the Kato norm of the negative part V —.
Sometimes it will be useful to handle 5~ instead of . (Clearly, n=(r) < n(r)
for any r). Now, all the quantitative informations we need about L are contained
in the number A and the functions n, ™.

Note that, if V € LP(Q) with p > n/2, then by Holder’s inequality
Ve K(Q)and 5(r) < ¢||V]|, - r® with ¢, @ only depending on n and p.
So our assumption generalizes the case which is studied in standard variational
approach. If V € K (1), one can verify that:

i Vell(Q)

(ii) n(r) is finite for every r, monotone and nondecreasing;

(i) ||[V|1 €£d"%n(d) where d =diam.Q;

, 14
(iv) sg})/ﬂ E‘-_—%%I:;dy < n(d);

(v) 7 isbounded and definitively constant, 7 (r) < 7 (2d) for every r.
Note that, if f € £} _(Q) and n(7) < oo for some r, then properties (i)-(v)

loe

hold, but f must not necessarily belong to K(2) (a counterexample is given in
[2]). So the crucial property in defining K ({2) is that  (r) — 0. To visualize, in
some particular cases, what kind of singularities are admitted for a Kato potential,
we mention the following criterion: ,

Theorem 1.1. (See [2]). Let @ C B(0,R) and V be a central potential,
V(z) = f(|z|). Then V € K(Q) if and only if:

R
/ r|f(r)|dr < oo.
0

(Compare with the example given in the introduction).
A fundamental result, due to Schechter (see [22], p.138') is the following:

Theorem 1.2. If V € K(R), there exist a constant k = k (n) and, for every
& > 0, a constant cs = ¢ (6,n) such that for all p € Hy'*(Q):

[ VIt da < k(@ s + esn () el
Let us considere now the bilinear form associated to L:

a(u,v)= / (@ijUz, ve; + Vuv) dz.
Q ‘
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Since (2 is Lipschitz, there exists a linear continuous “extension operator’;
T: H?(Q) - Hyl3 (%)

(where X is a sphere containing ) with Tu/q = u for every u € HY 2(Q).
Then forevery u, v € H1?() one has:

/ Vauv
Q

¢(n)-n(2d)- ”TUHHg'z(E) ”T”“H;'2(2) <
<NTIPe(n) - n(2d) - lull 1.2y - 1ol r.2(0).

Hence a is bilinear and continuous on H1:2(Q2). Moreover, by ellipticity, for
every u € H,'*() one has:

a(u,u) > A~ / [Dul? dz — ¢ (n) - 5=(24) - |ul41.00q) -
Q

/ [VTuTv| < (by theorem 1.2)

Hence there exists a constant ¢; (n, A)such that if:
1y c1(n,A)-n7(2d) < 1

then:
a(u,u) > 60”'“”3{1’2(9)

for some positive cy, i.e. the bilinear form a is coercive on H,'*(9).
We recall now some standard terminology about weak solutlons.

We say that u € H1?(Q) is a solution of:

{Lu:T in )

(1.2) u=g ondq,

forT € H~1%(Q), g€ HV?(Q), if:
{a(u, )= (p,T) Yo Hy*Q);
u—ge Hy Q).
We say that u € H2*(Q) is a local solution of Lu = 0 in § if:
a(u,p)=0 VYepel§ ).
We say that u € H12(Q) is a supersolutionof Lu = 0 in Q if:
a(u,0) >0 Yo Hy?(Q)suchthatp > 0in Q.

We say that v is a it subsolution if —u is a supersolution.
Under assumption (1.1), by Lax-Milgram’s lemma the following holds:
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Theorem 1.3. The problem (1.2), for T € H~1%(Q), g € H“*(Q) assigned,
is well posed. The constants in the continuous dependence estimate depend on
n, A, n,70, M. (If g = 0, the constant only depends on n, \, n).

Under the same assumption, let us state also a maximum principle.

Theorem 1.4. Suppose that w € H () is a supersolutionfor L, and v > 0
on O in sense H'?(i.e.u™ € Hy*(Q)); then u > 0 a.e. in Q.

Proof. Since u is a supersolution and u~ is a nonnegative test function:
0<a(u,u”)=-a(u",u") < —collu”||fe

with ¢g > 0, by coerciveness. Hence u~ = 0in 2, i.e. « > 0 a.e.

Now we recall some basic facts about the Green'’s function G for A in €.

" Theorem 1.5. (See [18]). There exists a function G (z,y) such that for every
fe€LP(), p> n/2, the solution of:

Au= finQ

{ u€ Hyl2(Q)
is given by:
(13) ue) = [ Gle,n)w)dy

Moreover G is nonnegative, symmetric and satisfies thefollowing estimate:

(1.4) G(z,y) < I?Q% forevery z,y e .
In particular:
(1.5) sup [I6(2, Iy < e(n, A, o) forallg < —

Next theorems 1.6 - 1.7 are taken from [9]. We stress that both of them are
obtained in a purely analytical way. (No probabilistic argument enters the proof).
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Theorem 1.6. (”3G Theorem” ). There exists a constant c3 depending onn, \,n
and the Lipschitz charachter of Q such that:

G(z,y)G(y,2) 1 1 }
< .
G = \e—y? T ly= o
forall z,y, z€ .

(1.6)

Theorem 1.7. Forany z€Q, weQ, w # 2.
G (z,w)G(w,y)

lim = 0.
ves G(zy)
If z,2' € 0, w € Q, the limit:
lim G (z,w)G (v, y) = K (2,0, 2")

.t:—»z' G(z’y)

y—z

exists and is a continuous function of (z, 2') on 8Q x 99Q.

Now, put ¢ = max (¢, ¢3, 2¢3) where ¢q, ¢z, ¢3 are as in (1.1), (1.4), (1.6).
Note that ¢ = ¢ (A, n, rg, M). Put:

(1.7.a). 6 =c-n(2d)
It is also useful to define the number:
(1.7.b) 6~ =c-n7(2d).

Clearly, 6~ < 4. Henceforth we shall suppose the Kato norm of V' so small to

have:
1

(1.8) 6 < 5"

Particulary, theorems 1.3 - 1.4 hold under this assumption.

Remark 1.8. Note that, whatever is V € K (), condition (1.8) is fulfilled if
we restrict to a sufficiently small ball B,.. Then our assumption does not imply
any qualitative restriction about those results which are of local nature, such as
continuity of solutions and Harnack inequality (see sections 3,6): these theorems
will hold for any V € K(Q) on sufficiently small balls and, in consequence, on
compact subsets of () (with constants depending on the compact set). On the
other hand condition (1.8) is necessary to give sense to “global” concepts, such
as “solution of Dirichlet’s problem” and therefore is requested in order that some
results a “Fatou’s theorem” (thm. 6.13) may hold.

Now we discuss existence of the Green’s function G, for L in . (In the
following, we will always indicate by G, ', the Green'’s functions for A and L,
respectively). This will follow from the next theorem, which is taken from [6]:
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Theorem 1.9. Let u be the solution of:

Lu=f inQ) with feLP(Q), p>n/2

(1.9) 1,2
ue Hy™(Q)

Then u € L*(Q), and:
(1.10) lulloo < €|l fllp withe = c(n, A, d, ).

The theorem is proved in [6] in the case of regular coefficients and potential.
The general case can be obtained from this using a standard “mollification
tecnique”. An explanation of this method, which will be useful in the following,
too, can be found for instance in [18].

As a consequence of theorem 1.9 we have that, for each fixed z € Q, the
linear functional on LP(Q) (p > n/2) which to every f associates u(z), where
u is the solution of (1.9), is continuous. So there exists a function G (z yY)s

with:

(1.11) supl|GL(z,)|lce) < ¢(n, A, d,8)
such that the solution of (1.9) is given by:

(1.12) u(z) = /Q GLlz,y)f(y) dy

We call G, the Green’s function for L and . Note that G, is symmetric
(by the symmetry of the bilinear form associated to L) and nonnegative (by the
maximum principle, thm. 1.4). Moreover, G (z, -) solves the equation Lu = §,
in distributional sense (where §, is the Dirac mass concentrated at z), so if a;j
and V' are smooth in , G (z,) is smooth in  \ {z} and solves the equation
Lu=0in 2\ {z}. More properties of G, will be proved in section 4.

2. Local estimates for solutions of Lu = 0.

We will need in the following two basic local estimates for solution of
Lu = 0. Namely, we need bounds for the £2-norm of the gradient of u and for
the £°°-norm of u, on a ball, both in terms of the £2-norms of « on a larger ball.
All the results in this section are taken from [6].
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Theorem 2.1. (" Caccioppoli’s inequality” ). Suppose that u satisfies Lu = 0 in
Q.If0 < s < t, B,, B; denote concentric balls of radii s,t and B; C Q, then:

C
Du2dm<—-—————/ u? dz
/B,' fe < e ),

withc = ¢(n, A\, ).

The proof can be found in [6], and follows from the definition of weak
solution, by standard “test function techniques”. Thm 1.2 is also employed, to
estimate integrals involving the potential V.

Remark 2.2. By a covering argument, theorem 2.1 extends to compact subsets
of Q:if Q; €y €Q and u is a solution of Lu = 0 in ), then:

/IDul2da:§c(Ql,Q2,n,/\)-/ u? dz .
»Q] Q2

Particularly, we will use theorem 2.1 in the following form:
let C' be a spherical shell contained in B, \ By (1/2 < s < t < 1),
C = Bi_jc \ Bsta., with e of the order of (1 — 5), and C' = B;_. \ B,4.. Then:

Dultdz < ¢ /uzd:v.
[ 1w SE=o o

Lemma 2.3. Let u be a solution of Lu = 0 in Q, and suppose that B, C Q.

Then: 12
(/ u2dx) Sc-/ |u| dz
Bi/2 By

The proof is in [6], and makes use of an argument which can be found in
[13] and relies on an idea od Dahlberg-Kenig, consisting in getting the desired
result from the following estimate:

() < o {FUL}TF

t—3s

withc = c(n, A, n).

where: 12 .
I(s) = /uzdm for- <s<1.
()= ([, wda) " fors

This estimate, in tum, follows from Sobolev inequality and thm. 2.1.
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Remark 2.4. By dilatation, from lemma 2.3 it follows:

][ uzdxgc][ lu| dz
Br/2 B,

(with ¢ independent from ) if Lu = 0in 2 D B,,.
Then (see remark 2.2) we can obtain the following version of lemma 2.3,
for spherical shells: :

1/2
(/ u? d:v) < ¢ 72 / |u| dz
Bi—2¢\Bs+4a¢ (t—s) Bi—¢\Bs ¢ ‘
(3 <s<t<1)if Lu=0inQ D By, and ¢ of the order of (¢ — s).

Theorem 2.5. Let u be a solution of Lu = 0 in Q, Q O B,. Then, for
3 <s<t<1,wehave:

’ 1/2
C
oo < . 2 .
Hu”[’ (BS) - (t - 8)a (~/B¢ ¢ dx)

with c(n,\,n), a = a(n).

The proof, in the case of smooth coefficients and potential, can be found
in [6]. (The general case then follows by mollification). In the regular case,
representation formulas by means of Green functions and a suitable choice of
test functions are the main tools of the proof. Thms. 2.1 and 2.3, in the case of
spherical shells, are employed for the estimates.

3. Continuity of the solution of Lu = 0.

A famous result of De Giorgi-Nash-Moser (see [11], [21], [19], [20]) states
that any local solution of Au = 0 in (2 is locally Holder continuous. We recall
here a precise statement of this fact, with will be used in this section:

Theorem 3.1. (See [20]). Let u be a solution of Au = 0 in B,(zo). Then:
I:II — £l70| &
)

(3.1) [u(2) - u(w0)| < ¢(n,A)- sup u]-

Br(mO)
for every x € B,(zo), with a = a(n, ).

Here we want to show how from this fact continuity of solutions of Lv = 0
can be proved, using the local boundedness of solutions stated in thm. 2.5. Let
u be a solution of Lu = 0 in By, (zo). Then, one has:

vu=v+w inB.(z,),
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(3.2) { Av =0 inB,(zo) { Aw = -=Vu in B,(zg)

v=u ondB,(z) w=0 ondB.(z).

Since u is bounded in B,(zo), v is bounded, too, and by thm. 3.1 v is
continuous in B, (zo) and satisfies (3.1). Moreover, Vu € K(B,(,)). Then we
say that:

Lemma 3.2.

(3.3) w@==[ GV udy

r(O

(where G is the Green’s function for A in B.(z0)) and w is continuous.

Proof. The fact that representation formula (3.3) holds can be seen at the
following way. Put:

f=-Vu, fm(a:)z{f(x) iflf(w)lsm.

0 otherwise

4

Since f,, € L>(Q), the solution of:

AWy = frp,  in B2r(x0)
w, =0 on aBzr(.’Eo)

is: :

wn(2) = /B G fa)dy

and:
Vertwn|le < / G (z,y)|f(y)|dy < (by thm. 1.5)

B,-(l‘o)

<e / ———mj—)—l_—zdy < const.
B.(x0) 1T — y|" :

Hence, by Caccioppoli’s inequality, w,, is locally bounded in H!2, so there
exists a subsequence w,, converging (locally) to w, weakly in H*? and a.e..
Since:

/B L GEhWd= [ G

B. (zo)



POTENTIAL THEORY FOR STATIONARY SCHRODINGER. .. 39

it follows (3.3).
Now, observe that if f € K((2) the function:

w@=[ G
Br(-TO)
is continuous. In fact (?), if we put:
wn(@) = | G (2,4)f(y) dy
{v€B,(zo):lz—y[> L }

by definition of Kato class, we see that w,, — w uniformly. Moreover, since
G (z,-) € C(Bar(zo) \ {z}) and (1.4) holds, one gets that w,, is continuous, so
that w is continuous, too.

Up to this time, we have proved the continuity of solutions of Lu = 0 only
in a qualitative way. Now we want to, determine a (local) modulus of continuity
for u, wich depends on u only through its local supremum. Namely, we have the
following:

Theorem 3.3. Let u be a solution of Lu = 0 in By.(xo). Then for every
TE B,.(a:o):

B,-(.’Eo) r

(34)  |u(e)-u(mo) S e(n,))- sup '“"{(Im_%')a

(144 n(3r}le - xol%)}

with a = a(n, A).
Note: estimate (3.4) is, up to constants, identical to the continuity estimate
which is found in [6] as a consequence of Harnack inequality.

Proof. Here we keep the notations of (3.2) - (3.3). Then, forevery & € B,.(z¢):

(3.5 |lw(z) — w(zo)| <

< sup |u |G (z,y) — G (x0,y)] - |V(y)|dy =
B"(xo) Br(:co)

(®) The following argument is taken from [2], thm. 4.15.
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= sup ful-{ [ G (2,5) ~ G (z0,9)]- IV (y)| dy +

B
r (o) B, (z0)M{¥:ly—z0 <27 ? |z ~20]|1/?}

+ G1,(2,y) - G (0, )| - |V(y)|dy} =
B, (s0){u:ly=z0|>2r 2 |z —20 |}/ ?}
= sup |u|-{[+ II}.

Br("I"O)

| Now, by (1.4):
(3.6) Isdxmn{/ I L) S
ly

-2
—zo |27/ 2|z —z4|1/2 |zo ~ yln

ly—z|<L|e—zo|+2r1/2 |z — y|

(since |z — o] < /2| — z|1/2)
| < c(n, \)n(3ri2 |z — z0]1/2).
Now we estimate II. |
Put p = |y — zo|. If [y — zo| > 2r'/2|2 — 20|12, then |z — 20| < p.
Now we apply thm. 3.1 to G (-, y), which is a solution of Au = 0in B,(zo):

T — To|\“
lG(il?, y) - G(Q:O, y)l _<.. C(TI,,)\) 'squ(w’y)wGBp(xo) ' (l P 0l> .
But:
(n,A) ¢
< < (fi <
G(w, y) Iw yln_g - ( orwe BP(‘TO)) pn._z =
< c(n,A)
= foo— g
while, since |y — zo| > 2r1/2|z — zo|'/?:
<|:c — :z:ol)a < (lx — wol)aﬂ.
p T
Then:
|z — 20|\ /2 V)l
(3.7 II<c(n,A). ([——=) . T——t—sdy <
) N)-(57) 7 g

<ec(n,A)-q(r)- <|$—x0])a/2.

From (3.5), (3.6), (3.7) the theorem follows.
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Remark 3.4. To have a control for the local modulus of continuity of u in terms
of the local supremum of « (and therefore, by thm. 2.5, in terms of the local
L?%-norm of u) is important for the following reason. Let u,, be a sequence of
local solutions of Lu = 0 in {2 such that:

lumllc2iay < e(') forevery Q' €.

Then, by theorems 2.5 and 3.3 the family {u,, } is locally (equi) bounded
and equicontinuous, so there exists a subsequence converging to some u € C((2)
uniformly on every compact subset of (2. Moreover, by thm. 2.1, the function
u is also the limit of a subsequence weakly in H*(Q). These facts will be
implicitely used in sections 5-6, to apply the arguments contained in [5].

Remark 3.5. While solutions of Au = 0 are locally Holder continuous,
solutions of Lu = 0 have been proved to be simply continuous. This result cannot
be improved if V is assumed only in K({2). On the other hand, if V € LP(Q),
p > n/2, it is known from [25] that a local Holder continuity estimate holds.
However it is possible to obtain this result under a weaker assumption: if V is
assumed in suitable Morrey spaces (contained in K'({2)), then solutions are still
locally Holder continuous. This result is contained in [ 12]. Namely, the following

holds. Let:

L@ = {7ec'@:Iflha= sup Wldy < oo},
=€R" QNB,(z)

for any fixed A > 0. Then if V € £1*(Q) for some A > n — 2 and v is a local
solution of Lu = 0 in 2, u is locally Holder continuous in €.

Note that: £1*(Q) C K(Q)if A > n—2;if V € £P(Q) forsome p > n/2,
then V € £1*(Q) for some A > n — 2, butbeing in £1+*(©2) does not imply any
extra integrability property. (See [12] for these facts).

Other sufficient conditions to assure local Holder continuity of the solutions
are discussed in [23], see thm. 3.4.

- 4. Properties of the Green’s function.

The first result we present in this section is an estimate comparing (7, and
G'. This will be the basis for all the following development of potential theory.
(Section 5-6). The result is due to [9]; the proof we present here is an analytical
one, as appears in [3]. We stress that it does not depend on any argument or result
contained in sections 2-3: the only nontrivial ingredient of the proof is the '3

Green theorem” (thm. 1.6).
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Theorem 4.1. If § is defined as in (1.7. a) and (1.8) holds, then:

(4.1) (%—?)G(m,y)SGL(x,y)gI%EG(w,y) forace. z,y€ Q.

Proof. Using representation formulas (1.3) - (1.12) one can find the following
identity:

4.2) Gi(e,y) =
= G(:z:,y)—-/ Gr(z,w)V(w)G(w,y)dw forae. z,y, € Q.
Q

Now, let consider the space B defined by:

B = {f : A x 2 — R, fmeasurable such that || f||g =

= sup/Q | f(z,y)|dy < +oo}.

€S
B is a Banach space. If we define the operator T as:

Tfe)= [ fw,p)V)6 (e w)do

one can verify that T is a well defined, linear continuous operator from B to 5,
with ||T||z(s) < 6.

Let us consider the integral equation:

(4.3) f+Tf=G

where the unknown function f is sought in 8.Then (I + T') can be inverted by
Neumann series:

(4.4) I+T)™" =Y ()T

where the series converges in £(B). Since, by (4.2), the solution of 4.3)is Gy,
(4.4) gives:

(4.5) GL =) (-)"T"G
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where the series converges in B. By thm. 1.6 we have:

TG (2,9)| = ] / G(w,www)G(x,w)dwl <

<G-of [ [ 0L 6} o

o ly —w|™2 |z — w|"—?
By iteration:
(4.6) T"G (z,y)| < 6™ -G (z,y).

Since convergence in B implies convergence a.e. of a subsequence, it follows
from (4.5) - (4.6) that:

(4.7) Gu(z,v) < 1 G (z,y) forac.z,yeQ,

and so we have the right hand inequality in (4.1). On the other hand, again from
(4.2), we have:

GL<w,y)=G(x,y>-{ / Grw Gﬁ)i) w)V(w)dw}Z

> (by (4.7))
1 G(w,y)G(z,
> (by thm.1.6)
1 1-26
ZG(a:,y)-{l— T3 '63-277(d)} > ( 1_6)G($,y)
and the proof is complete.

Let us see some consequences of thm. 4.1. Combining this fact with results
in [18], we have:
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Theorem 4.2. Let ¥ be a bounded Lipschitz domain which can be mapped
smoothly onto a sphere, and let G1,, g be the Green’s functions for I and — A,
respectively, in ¥.. Then, for any compact subset C of ¥, there exists a constant
K onlydepending on C, Y and §, such that:

k™ g(z,y) < Gr(z,y) < k-g(z,y) forae z,yeC.
Corollary 4.3.

Gr(z,y) < 'l;c_“("él—)n—‘g
Remark 4.4. By the maximum principle (thm. 1.4) the following property holds.
Let V1, V, € K(Q) (both V; satisfying our assumption (1.8)), and let G L,Gr,
be the Green’s functions for 4 + V;, A + V,, respectlvely If Vi < V,, then
Gr, <Gy,.

Now, let us write V. = V* — V= let 5~ be the Kato norm of V—, 5~
satisfying (1.8),and V+ ¢ K (). Then the bilinear form associated to L is still
coercive, and there exists the Green'’s function G1,. Hence, by the above remark,
G < G4-v—, while G 4_y — clearly satisfies thm. 4.1. So it is still true that:

forae. z,ye.

Gr(z,y) < —1— 5 G (2.9).

It is the estimate from below for G, that w1th our techique of proof, cannot be
stated without the assumption that V' is small, too.

Now we want to discuss some regularity properties for the Green’s function
G 1. We remember that, by our definition of G, all we know about it, in terms
of function spaces, is that:

GL € LP(Q,LQ)) forg < —”—2-

On the other hand, if V' and the coeeficients a;; are smooth, then G (z, -) is
smooth in 2 \ {z}, and solves the equation Lu = 0 in Q \ {z}. Now we state
the following result:

Theorem 4.5, Fora.e.z € Q, Gr(z,-) belongs to:
Hg(\{=}), H'P(Q) forp' < ——, C(2\ {a}).

loc
Moreover, Gy (z,-) is a local solution of Lu = O in ) \ {z}.

To obtain these results we will follow the line of [18], seeing (G, as the
limit, in suitable spaces, of a sequence of Green’s function for approximating
operators. This will be possible by the results of sections 2-3, and using a notion
of “very weak solution”, introduced for the operator A in [18], which we are
going to explain here. We start with the following:
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Theorem 4.6. Let u be the solution of:

n

(23) Lu = le(fi)_x,. with f; € LP(Q), p > n |

ue Hy? ().

Then uEC(ﬁ) and ||u]|eo < c||fillp, With c = c(n, A, p,|8],6).

This result holds for the operator A, and is due to Stampacchia. (See [18] or
[26]). We can prove it for the operator L, with the same technique used in thm.
3.2: first, we suppose V and a;; smooth, so that v is actually bounded. Then we
write u = v + w with v satisfying thm. 4.6 for the operator A, and:

w(z) = - /ﬂ G (z,9)V(y) u(y) dy,

so that ||w||eo < 6||#|co. Then estimate (4.8) follows. By mollification, (4.8)
holds in the general case, t00, so that u is bounded even thought coefficients are
discontinuous. Then w is continuous, and u is continuous.

Now we give the following: )

Definition 4.7. (See [18]). For a measure u of bounded variation on ), we say
that u € LY(Q) is a " very weak solution” of Lu = p (vanishing at the boundary

of ), if it satisfies:
/u-Lgodz:/godp
Q Q

for every ¢ € H}'*(Q) N C(Q) such that Ly € C(Q).

Uniqueness of the very weak solution in £!(Q) is easily seen. On the other
hand thm. 4.6 allows us to apply the "duality method” used in [18] to assure that
a very weak solution always exists. Namely, the following can be proved:

Theorem 4.8. For any measure u of bounded variation, a unique very weak
solution of Lu = p exists, and lies in H}'? (Q) for any p' < —=; moreover
satisfies:

(49) Il oy < om0 25 1900)- [ 1
and u is assigned by the integral (a.e. converging):

(410) u(z) = /Q GL(e,y) duy).
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Finally, G (=, -) is the very weak solution of Lu = é,,.

Now we tum to the proof of thm. 4.5.
We regularize V' and a;; by mollifiers, and consider the sequence G3 of the
Green’s functions of regularized operators. By thm. 4.8,

IGL(25 M g1 () < constant  (for any p' < -—)

From this it follows that (a subsequence) G L(:v, ) convergesto G (z, -) weakly
in Hy” (). Particulary, G (z,-) € HY" ().

By thms 2.1-25, G§(z,-)is bounded in H12(Q') for every Q' C Q \ {z},
so that a subsequence converges (to G1(z,-)) in H1*(Q'). Then Gr(z,-) €
H2(9Q\ {z}) and is a local solution of Lu = 0 in Q \ {z}. Therefore, by thm.

loc

42, Gr(z,-)eC(Q\ {z}). So thm. 4.5 is proved.

S. Dirichlet’s problem with continuous boundary data. [-harmonic mea-
sure.

In order to define the basic concept of L-harmonic measure and develop a
potential theory for L, we need a sharper version of maximum principle.

Theorem 5.1. (See [3]). If u is a supersolution (subsolution) for L in Q, then
(respectively):

1 s N

(5.1.a) minu > y—minu
1. < +

(5.1.0) max ¥ < —— maxu

If w is a solution of Lu = 0 in Q, then:

(5.2) max Ju| < —— max|u] .
' o 1-6 a0

Moreover, the number § can be replaced by 6§~ (see (1.7 b)), so that ifVis
nonnegative one can take the constantin (5.1) - (5.2) equal to one.

The proof makes use of thm. 4.1 and the maximum principle, thm. 1.4,
Replacement of § with §~ is possible by remark 4.4.
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Remark 5.2. If V assumes also negative values, one cannot expect a ’standard”
maximum principle to be true:

(5.2) max |u| < max |u] .
Q )

To see this, is sufficient to consider ) the unit ball, A = —~A, V a small
negative constant: then the solution u with boundary value 1 is a positive
function asuming a strong maximum at the origin. We are now intersted to
solve a Dirichlet’s problem:

(5.3) {Lu:O in Q

v=f ondf

where f is a continuous function defined only on 9Q. If f is the trace of a
function f € C1(Q), clearly we can consider the variational solution of:

(5.4) {LuzO in §)

u:f on 0f}

In the general case, f can be approximated with smooth functions defined on
R™, and the corresponding “approximating problems” can be solved. Thms. 2.1
and 5.1 enable us to repeat the same argument which is found in [18], to get the
following result:

Theorem 5.3. There exists a linear mapping [J wich to any continuous function
f defined on OQ associates a function w € H,;*() N C(Q) which is a local
solution of Lu = 0 in 2, and satisfies the maximum principle (5.2). Moreover,
if f is the trace of a function f € C*(Q), w = J f coincides with the variational
solution of (5.3).

Remark 5.4. If we do not assume that 2 is Lipschitz, we can still prove the
previous theorem, except for the last conclusion: it is no more true that if f is the

trace of a function f € C 1(Q2), then u solves the problem in variational sense.
Theorem 5.3. allows us to give the following definitions.

Definition 5.5. A point w € 0€) is said to be regular for L ifffor every h € C(Q)

one has:
lim Jh(z) = h(w).

T - w

T€82

Definition 5.6. For a fixed z € 1, let us consider the functional f — J f(z)
defined on C(0N2). By thm. 5.3 this is a linear continuous functional; hence by
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Riesz’ theorem there exists a positive regular Borel measure wy® representing
it.
Tf(z)= [ [f(y)dwi(y).
o9

We call w} the L-harmonic measure evaluated at z. We shall indicate with
w% the Borel measure obtained by the same construction for the operator A
(A-harmonic measure evaluated at z ).

The main result we are going to prove now is the following: there exist
constants ¢y, ¢ such that for any Borel set £ C 9Q and z € Q:

(5.5) c1 - wy(E) < wi(F) <ey-wi(E).

From this fact and known results for the operator A (namely: Hamack inequality,
see [20], and potential theoretical results, see [5]) analogue results for the operator
L will follow. (See section 6). We shall obtain (5.5) from the estimate of thm.
4.1 involving the Green’s functions for A and L: The link between harmonic
measures and Green’s functions is the ’kernel function” for A, a notion studied

in [5]. )
Definition §.7. Fix z € Q, 2 € 09Q. A function K%(-, z) defined in Q) is called a
kernel function at z for the operator A, normalized at z, if:
(i) K%(-,z)isasolutionof Au = 0inQ,
(i)  K3(-,2)€C(Q\{z})and: lim K%(w,2)=0;
o

(ii))  Kj(w,z) > 0foreachw e Qand K§(w,z)=1;

For z and z fixed, there exists one and only one kemel function K%(-, z)
and it is:

dwy
dwj(2)

(5.6) K% (w,z) =

(Radon-Nikodym derivative of the A-harmonic measures). (See [5]).
It can be proved also that, for any w € 2, z € 99, there exists:

o G(wy)
y—2€90 G(m’ y)

yeEN

(5.7) = Ki(w,z).

The following two theorems are taken from [3]; these results are proved in a
probabilistic way in [9].
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Theorem 5.8. For x € Q, z € 90, there exists:

z.2) = lim GL(way)
(58) Fe.2) 2 Gy

Moreover F is continuous on 2 x 0 and:

(5.9) Flz,2)=1- / Ki(w,2)V(w)Gr(z,w)dw.
Q
The proof consists in showing that in the equality:
- Gir(z,y) G(w,y)
5.10 ———=1- | — .-Gr(z,w)V(w)dw
G Gy =1 Tay CHEmV@)

the limit for y — 2z can be taken under the integral sign. This can be done by
Lebesgue’s theorem, using thms. 4.1, 1.6 and the definition of Kato class.

Theorem 5.9. (Comparision between harmonic measures).
For each x € Q) ,z € 00, one has:

(5.11) dwi(z) = F(z,z) dw’(z).

Moreover, there exist constants ¢y, c; depending on § such that (5.5) holds, for
every Borel set E C 92, z € Q.

Proof. Let f€(C(0N2). By (5.9):
(5.12) / £(2) F(z, 2) dwi(z) = [ f(2)dwi(z) -
89 on

= [ 1Gawse) -
o0

- / V(w)G(z, w)dw/ f(z)dwi(2).
Q o)
Now, let v, u be the solutions of:

Lv=0 inQ Au=0 inQ
v=f onodfd v=f onof.
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Then (5.12) becomes:

f(2) F(z, 2) dwi(z) = u(z) -
80

- / V(w)Gr(z,w)u(w)dw = v(z) = f(2) dwi(z).
Q o9
Since this is true for every f € C(0€), it follows (5.11). Now, by thm. 5.8, (4.1)
implies:

1-26 1

1___6 Sf((L",Z)Sm forall $€Q,Z€09.

So (5.5) follows from (5.11).

6. Potential theory for L.

Now we obtain from thm. 5.9 a Hamack inequality for L (i.e. the main
result of [6]).

Theorem 6.1. (Harnack inequality).
Let u be a positive solution of Lu = 0 in Q O By.(x¢). Then:

max ¥ < c¢- min u
B,-(.’Do) B,-(.’L‘o)

with ¢ = ¢(n, A, 6).

Proof. Since u is a solutionin By, (z¢), by thm. 4.2 u € C(B,(2¢)); then if w§
is the L-harmonic measure relative to B,.(zg), for every zy,z, € B.(zo) one
has:

w(y) = /8 o HAWEE) S Gy hm. 59)

< 1 u(z) dwi!(z) <
146 JaB,(z0)
(by the Harnack principle for A, see [20])
< en, ) u(z)dwi*(z) < (bythm.5.9)

T 1=6 JoB,(z0)
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< c(n, A)

) —
S 1226 o, oy “H I = el A ) ufza).

Remark 6.2. By the Hamack principle we have that, for any z;, 2z, € Q, the
L-harmonic measures w;*, wj? are mutually absolutely continuous. So it is not
ambiguous to speak of a set ”of L-harmonic measure zero”.

Now we derive for L three theorems which are proved in [5] for 4 (3).

Theorem 6.3. (Boundary Harnack Principle).

Let 20 € 0, 7 > 0,z € Q such that |z, — 2| = r and dist (z,,00) ~ r (i.e.
the distance is of the same order of r). If v is a positive solution of Lv = 0 in
2, vanishing continuously on 02 N By,.(2p), then.

(6.1) sup v < ¢ v(z,)
B,-(Zo)

for some constant ¢ = c(n, A, 6,79, M).

Proof. The proof is similar to the previous one: one considers the region
Q' = QN By,(z). By thm. 4.1 and the assumptions of this theorem, v € C(ﬁ'),
then by representing v in ()’ by the L-harmonic measure of ' and using the
analogue result proved in [S] one gets the theorem.

Similarly one proves the following:

Theorem 6.4. (Comparison Principle).
- Let u, v be positive solutions of Lw = 0 in Q, vanishing continuously on
00N By, (20), let zo, T and ., be as in thm. 6.3. Then:

(6.2) sup <o E(zr)

Br(zo) v v

for some constant c = c(n, A, 6,79, M).

Theorem 6.5. (Comparison between soluﬁons of L and A),
Let u, v be positive solutions of Lv = 0, Au = 0 in Q, vanishing continuously
on 0Q N By, (29), let zg, v and x, be as in thm. 6.3. Then (6.2) holds.

Now we point out a consequence of Comparison Principle:

(3) All the results in the following of this section have been firstly obtained in [9]. The
present proofs are taken from [3].
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Theorem 6.6. Let u, v be positive solutions of Lw = 0 in Q, vanishing
continuously on 02 N By, (20), let zo and r be as in thm. 6.3. Then the quotient
u/v can be extended as a Holder continuous function on Q N By..(2).

The technique used in [20] to prove Holder continuity of the solutions from
Harack inequality is here employed to prove Holder continuity of the quotient
of solutions by means of the Comparison Principle (thm. 6.4).

Remark 6.7. Inthe proofs of thms. 6.1, 6.3 - 6.6 we have applied our estimate on
L-harmonic measures only on sets of the size of B,.. Therefore the assumption
(1.8) is not necessary here (see also remark 1.8): whateveris V € K (), we can
say that there exists Ry, depending on n, A, 1, such that for every r < R, the
statements of the previous theorems hold.

Once one knows these results, one can repeat the arguments contained in
section 2 of [5]: existence and uniqueness of the kernel function for the operator
L can be proved. Moreover, from the formula:

dew
r
dwf

(2)

Ki(w,z)=

it follows, by (5.14), that:

F(w, z)dwY(2) _ F(w,z) K5(w,2)
F(z,z)dw’(2) F(z,2) '

Hence we have that K§(w,-) € C(99) and:

Kfi(w,z)=

c1 - Kj(w,2) < Ki(w,2) < ey - K§(w, 2)

for some constants ¢y, ¢, depending on é, any z, w € §, z € 9. Now we are
interested in stating regularity of boundary points for L. This fact holds for A
by [18], since 2 is Lipschitz; to transfer this property to L we have to sharpen -
our study of the quotient F' = G'1/G.

Lemma 6.8. The function F' can be extended continuously to 8Q x 0§). For
z,2' € 0N itis:

(6.4) F(z,2)=1~- /{; F(w,2")K (z,w,2")V (w)dw

where K is defined as in thm. 1.7.
(Note that, since K (z,w,2) =0, F (z,z) = 1).

This result is a consequence of thms. 5.8 and 1.7, and can be proved in a
similar way to that of thm. 5.8 (see [3]).
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Theorem 6.9. (Regularity of boundary points).
For every f € C(052), 29 € 092:

lim | f(z)dwi(z) = f(z0).

zeq J O

Proof. Let{z,,} beasequencein ) convergingto zp, g,,(2) = f(2)-F (2, z).
Then g,,, € C(aQ) and “gm”oo <c ” / Hoo By (5.14):

/8 S5 dugn(z) = /8 gz dugn () =

:Aﬂ(gm_f.F(zo,-))(z)dw "(z) + /f 2) F (20, 2) dwim (2).

The first term tends to zero by uniform continuity of F(-,-) on Q2 x 9, while
the second term, by regularity of boundary points for A (see [18]) converges to
f(20)s F (20,20) = f(20) (by (6.4)). So we are done.

Remark 6.10. By remark 5.4, the notion of regular point makes sense even for
anon-Lipschitzdomain (2. It is an open question to study regularity of boundary
points for L on a general bounded domain. In particular, since we do not assume
that V' is nonnegative, the technique employed in [18] or [25], based on the
notion of “barrier function”, seems not applicable to get a characterization of
regular points for L ("Wiener test”).

From the facts we have stated up to this point, the arguments contained in
section 4 of [5] can be repeated for the operator L, and a "Fatou’s theorem” for
L can be stated. However, we want to recall here the main steps in the proof of

this result.
Let X be the unit ball in R”, K the kemel function for L in ¥ evaluated

at the origin. The first step is the following:

Theorem 6.11. Let u be a nonnegatzve solution of Lu = 0 in L. Then there
exists a finite positive Borel measure v on 0% such that:

u(z) = /;z Ki(z,2)dv(z).

This results depends on: properties of the Kemel function; Harnack inequali-
ty, thm. 3.3 (i.e.an estimate on the modulus of continuity of solutions independent
of regularity of coefficients). See [5] for the proof.
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Second step. Let 2z be a pointon 9%, T'(z) a cone of vertex 2y, contained
in %5 »* the nontangential maximal function of u in I'(2):

u*(z0) = sup u(z).

z€l'(20)
Let M, (v) be the Hardy-Littlewood maximal function of the measure v with
respect to the L-harmonic measure w = wY:
v(Ar(20))
w (Ar(20))
where zp € 92 and the sup is taken among all the sets A,.(z9) = B(2p) N 9.
Then:

Theorem 6.12. Let v be a finite Borel measure on 8%, and let u be defined by
v asin(6.6). Then: ‘

My(v)(20) = sup

u*(20) < ¢+ Mu(v) (20)
for some constant ¢ = ¢ (n, A, 8,79, M), any z € 0Q.
This fact is based on Harnack inequality, comparison principle (thm. 6.4)
and its consequences. (See [5]). Now, using theorems 6.11 - 6.12, properties of

the kemel function and arguments of real analysis (), to handle M, (v), one
can prove the following “’Fatou’s theorem””:

Theorem 6.13. (Existence of nontangential boundary limits).

Let u be a nonnegative solution of Lu = 0 in . Then almost everywhere on 0%
with respect to the L-harmonic measure w, the nontagential limit of u exists.
This means that (for a.e. zg € Q) for every cone I'(zy ), there exists:

lim u(z).
z€l(29)

If visasin(6.6), let us consider the Lebesgue decomposition of v with respect

tow:
dv = dvg + fdw

(i.e dvs is a singular measure and f is locally integrable, with respect to dw).
Then the limit is given by f. Moreover, if f is bounded, then dv, = 0 and the
following representation formula holds:

67) ()= /8 Ku(a,2)f(2) du(z) = /8 () dui(z).

As in [5], thm. 6.13 still holds when I is replaced by a bounded Lipschitz
starshaped domain.

(*) See for instance [27], chps. 1 - 2.
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Remark 6.14. A consequence of thm. 6.13 is that we can solve Dirichlet’s
problem for L when the datum is assigned in £!(9€, dw). Namely, one can
prove that if u is assigned by (6.7), where f € L1(9Q, dw), then u is a local
solution of Lu = 0 in ¥, and (a.e. with respect to w) has nontangential limit
equal to f. We also say that « is a solution of Dirichelet’s problem:

Lu=0 inX
u=f ongd¥

”’in the sense of nontangential convergence”. Note that this solution is not in
general unique.

7. Analytic and Probabilistic approach: a comparison.

Here we want to present, in an unformal way, the probabilistic standpoint
in the study of the Schrodinger operator. Then we will compare the probabilistic
approach of [9] with our one in deriving the results collected in this paper.

Let us consider a particle moving of “brownian motion” in a domain Q:
the particle starts at a point « and follows a “random path” in 2. (For instance,
small particles suspended in water move of brownian motion under the action of
molecular bombardments). This phenomenum can be rigorously modelized as
a “stochastic process” X (t,w) (°): for every random path w, X (t) denotes the
position in 2 of the particle, at the time ¢. We call “first time exit” 7, the (first)
time at which the particle hits the boundary of Q: | |

TQ :inf{t:X(t)éQ}.

Clearly, also 7, is a ’random variable”. Now, suppose that f is a continuous
function defined on 912, which we interpret as a payoff: if the particle starts at
z €  and hits 0Q for the first time at the point z = X(7q), then we have
winnings (or losses) equal to f(z) (according to the sign of f, we will have
gain or loss). Therefore one can ask what is the expected winning for a particle
starting at = € 2. What one can prove is that this value equals the value at = of
the solution u of Dirichelet’s problem:

(7.1) { ~Au=0 inQ

u=f on 0f).

(%) For these general notes on brownian motion, some references are: [29], chap. 31,
and [4], chaps.12, 15.
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In symbols.;
u(z) = E*[X(f(ra))]-

(Henceforth, E® will indicate the expected value of a random variable corre-
sponding to a brownian motion starting at z). We note that the presence in (7.1)
of the laplacian is a consequence of the assumption, in modelizing the physi-
cal process, of a homogeneous and isotropic medium. In the general case the
operator A can replace —A. So one has:

(7.2) FLX(f(ra)] = [ f2)dus (o)
Similarly, if g € C(€2) is a “payoff” defined in Q and we integrate winnings

and losses along the path of a particle starting at z until it exits {2, then one can
prove that the expected winning equals u(z), where u is the solution of:

Ay = in Q
(7:3) { u=0 ? (r)ln(?Q.
In symbols:
(7.4) £ [Toxaa= [ 6o

From (7.2) - (7.4) we also have the following probabilistic interpretation
for the integral of the Green'’s function and for the A-harmonic measure:

E*(r0) = /Q G (2,y) dy

P*[X(ra) € B] = wi(B)

for any Borel subset B of 9 (The first term in the last formula means: “’the
probability that a particle starting at z hits the boundary in a point of B C Q).

Now we come to the Schrodinger operator. First of all, the condition that
V € K(Q) can be expressed in a probabilistic way. In fact the condition:

Vv
lim sup/ —M_—é— dy=0
rl0 = JanB.(s) [T —y|"

can be proved to be equivalent to the following:

1
(7.5) li sup B7 / V(X(s))|ds = 0.
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The relationship between brownian motion idea and the Schrodinger
operator is given by the Feynmann-Kac formula, which we now state. Let us

define the random variable:
TQ
ev(ma) = exp — / V(X (s))ds.
0

Then the solution u of problem:

Au+Vu=0 inQ
u=f on 012

is given by:
(16)  u(z)= /8 () dui(s) = B (X () -ev(ra)).

(We will specify later conditions under which this formula holds).

To estimate the size of V' in K (), two basic quantities are defined in [9];
the gauge and the conditional gauge. The gauge of (A, Q, V) is, by definition,
the function:

F((B) = E“"[ev(m)] (fOI’ re Q)

To introduce the conditional gauge, a slight modification must be done in our
model of brownian motion. Henceforth, we think that the particle moving in
has a (random) “path lifetime” 1, that is either the particle is “killed” at the
first time 7 when it hits the boundary, or it "dies” at some point y € Q (before
hitting the boundary) at the time (. In both cases still call 7 the “first time
exit”.

So one can speak of the "conditional expectation £ (of a random variable)
for a particle starting at = and conditioned to converge at y at the path lifetime
Q" . (z,y € Q). Then the conditional gauge of (A, 2, V) is, by definition, the
function: |

F(2,9) = Eilev(ra)]  (forz,ye Q).

Now we can describe the line followed in [9] to obtain potential theoretical
results for L in probabilistic way.
The assumptions made in [9] on V' are the following:
(i) Ve K(R),i.e. (7.5) holds;
(ii) F(z) is not identically infinite.
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Under the assumption F'(-) # oo it is proved in [9] that (7.6) (Feynman-Kac
formula) and the following identities hold:

(7.7.a) dwi(z) = F(z,z)dw%(z)

The central result in [9] is the “Conditional Gauge Theorem”, stating that if
F(-) # o0, then:
0<ci L F(z,y)<ecy <400

for some constants cy, ¢y, any z,y € Q. From this fact and (7.7) it follows
comparability of G, and G, dw§ and dw?. So, in the probabilistic approach,
the bounds for the Green’s function of L and the L-harmonic measure are
obtained as a consequence of the Conditional Gauge Theorem, which is a quite
difficult result, based both on the analytic estimates of thms. 1.6 - 1.7, and on
involved probabilistic techniques. We recall that in our approach (7.7.b) is just
the definition of F', which is proved to be bounded from above and from below
directly by thm. 1.6. We also note that, putting f = 1 in (7.6), we read:

F(z) = wi(0Q).

So the gauge is certainly finite (and bounded) if the L-harmonic measure simply
exists (and if the Feynmann-Kac formula holds). On the other side, we recall

‘that, to get existence of w¥ , we had to assume (1.8), which is a more restrictive
condition than the finiteness of F', since this last condition only limits the size
of V=, while (1.8) limits |V'|. (However, as we noted in remarks 1.8, 6.7, some
results of ours still hold when only V ~satisfies (1.8)).

A. Appendix: the operator with a drift term.

We conclude with some notes on a different operator to that studied in this
paper, which may be (and has been) studied in a similar way. Let:

LUE—-%Au+Q-Du‘

(where b is an n-vector of functions defined on ). In the language of brownion
motion the term } is called “drift” and appears when the position of a particle
starting at z has expected value different from z. In [10] it is proved that the
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Green’s function of L and the L-harmonic measure are comparable with those
of the principal part — %—A. The key analytical estimate which is employed to get
this result is the following one (where G is the Green’s function for —3A):

G (z,w)|DyG (w,y)|
G (z,y)

This holds if  is a C1'! domain. In this case, the assumptions requested on b to
obtain the mentioned results are:

bl* € K(Q)

<edlz =yl fw -yt

(A.1)

and:
bl € Krn—1(£2)

1.e.:

T

sup/ b(y)| - |z —y|* "dy — 0 forr — 0.
QNB,(z)

When Q is only a Lipschitz domain, a nice estimate as (A.1) lacks, and the
assumptions which have to be made on b are much more involved.

Even in this case the estimate on the Green’s function of I could be
obtained in a purely ;analytical way, using the bound (A.1) and bypassing all
the probabilistic machinery. However, to follow this line we should assume that
b is small enough, in the classes involved, and in this case this request would
seem rather innatural, since in the study of a complete elliptic operator:

Lu = —(aijug, +dju)z; + biug, +cu

no smallness condition is usually imposed on the term (b;). (See for instance
[14], [25]).
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