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GRAPH INTERSECTION PROPERTY

J.J. CHARATONIK - K. OMILJANOWSKI - B. RICCERI

A pair (X,Y) of topological spaces X and Y is said to have the graph
intersection property provided that for each continuous function g: X — Y,
if a connected subset of X x Y projects onto the whole Y, then it intersects
the graph of ¢g. Various relations between this and other known properties
related to mapping theory are studied.

In particular, it is proved that: 1) if a space X is completely regular
and a space Y is an arcwise connected metric continuum distinct from an arc,
then the pair (X,Y) has the graph intersection property if and only if X is
hereditarily disconnected; 2) if a connected space Y is fixed, then the graph
intersection property holds for every pair (X, Y') if and only if there is a closed
linear order on Y with minimal and maximal elements. Related results are
obtained.

Introduction.

Given two topological spaces X and Y, the pair (X,Y') is said to have
the graph intersection property provided that for each continuous function
g: X — Y, if a connected subset of X X Y projects onto the whole Y, then
it intersects the graph of g. Therefore, if the space Y is not connected, then
each pair (X,Y) has the property. We omit this trivial case from our further
considerations, and we assume that the discussed space Y is connected. Taking,
in particular, X = Y and the diagonal D = {(z,z) : ¢ € X} of the cartesian
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square X X X as the connected subset mentioned in the definition, we see that
the graph intersection property turns into the (well known) fixed point property.

Certainly, the basic problem in the area is

PROBLEM A. What pairs of topological spaces have the graph intersection
property?

Two other problems are special cases of the above one. They are the
following.

PROBLEM B. Given a topological space X, characterize all topological
spaces Y such that the pair (X, V') has the graph intersection property.

PROBLEM C. Given a topological space Y, characterize all topological
spaces X' such that the pair (X, Y') has the graph intersection property.

One can say that it is too early to work on Problem A (or problems of this
kind in general) because contemporary mathematics is (or rather mathematicians
are) not able to solve a very partial case of it: what topological spaces have
the fixed point property? However, as it can be seen from further parts of this
paper, the graph intersection property is also related to several other well known
properties or notions pertained to mapping theory as for example disconnection
of the cartesian square by its diagonal, linear ordering, or the (metric) concept
of the span of a space. Because of its various connections with other concepts,
the graph intersection property seems to be a property interesting enough to
pay some attention to it. Obviously the authors are not able to solve the above
mentioned problems in full.

The obtained results can be d1v1ded into three groups. After some basic
observations, in the first of them it is shown that a connected space Y admits a
closed linear order with minimal and maximal elements if and only if for each
space X the pair (X, Y') has the graph intersection property (Theorem 14). A
structural property (called component intersection arc property) concerning a
connected space Y is studied which is related to the graph intersection property.
There are two main results of the second group. The former one says that if a
continuum X is arcwise connected and a space Y has the component intersection
arc property, then the pair (X, Y') has the graph intersection property (Theorem
25). The latter result asserts that if a space X ‘is completely regular, and a
connected space Y does not have the component intersection arc property, then
the pair (X, Y') has the graph intersection property if and only if X is hereditarily
disconnected (Theorem 27). The third group of results is devoted to relations
between the graph intersection property and the concept of semispan.
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Preliminaries.

The term space always means a topological space, and the term mapping
means a continuous function. If a subset A of a space is given, we denote by
cl A the closure of A. and by bd A the boundary of A in the space. We use
the term continuum for a (nondegenerate) compact connected metric space. A
continuum homeomorphic to the closed unit interval [0, 1] is called an arc. We
use the symbol ab to denote an arc with end points a and b. A simple triod
means the union of three arcs ap, bp and cp such that every two and all three
of them have the point p as the only common point. A simple closed curve is
defined as the union of two arcs having their end points as the only points of
their intersections. We use the concept of a completely regular space (called also
a Tychonoff space) in the sense defined in [2], p. 61.

Basic observations.

Given the product X x Y of two topological spaces X and Y, we denote by
T : XXY — Xandm, : X XY — Y thenatural projections,i.e.,m(z,y) =
and mo(z,y) = y foreach (z,y) € X x Y. Forafunction g : X — Y we let
I'(g) to denote the graph of g, i.e.,

I‘(‘g) ={(z,9(z))eX XY :2€ X}.

Let us accept the following definition.

Definition 1. The pair (X,Y") of topological spaces X and Y is said to have
the graph intersection property (shortly (X,Y ) € GI1P) provided that for every
mapping g : X — Y and every connected subset K of X x Y such that

(2) m(K) =Y,
one has
(3) KnT(g)#0.

We start with several easy observations.

Observationd. Ifthe spaces X and X' are homeomorphic,aswell as the spaces
Y andY', then (X,Y)€GIP ifandonlyif (X', Y')e GIP.

Observation S. If the spaces X and Y have the property that every mapping
from X to'Y is constant, then (X,Y )€ GIP.

In fact, if g : X — Y is constant, then I'(g) is of the form X x {yo} for
some yo € Y, hence for each subset K of X x Y condition (2) implies (3).
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Observation 6. If the space Y is not connected, then
(7) (X,Y)eGIP foreachspace X.

So, we omit this trivial case from our further considerations, and we assume
that the discussed space Y is connected.

Recall that a topological space is said to be hereditarily disconnected
provided it does not contain any connected subset of cardinality greater than
one, i.e. if all (connected) components of the space are singletons. For these
spaces we have the next easy observation.

Observation 8. If a space X is hereditarily disconnected, then
(9) (X,Y)EGIP foreachspace Y.

Indeed, if a connected subset K of the product X x Y satisfies (2), then
K = {20} x Y forsome z( € X. Thus for every mapping g : X — Y we have
(z0,9(z0)) € K N T(g), whence (3) follows.

For further results related to the graph intersection property in case the space
X is hereditarily disconnected see Theorem 27.

A proof of the following observation is contained in the proof of Proposition
12 below. '

Observation 10. For an arbitrary topological space X we have
(11) ~ (X,[0,1])€GIP.

It is natural to ask what topological spaces Y can be substituted in place
of [0,1] to get the conclusion (X,Y) € GI P for each space X . This problem is
symmetric (i.e. the rolesof X and Y are reversed) to the one of (9) of Observation
8. To present an answer to it, a concept of the linear ordering is useful.

Linear order.

We say that a relation < on a set X is a /inear order provided that for each
points z, y, z of X the following conditions are satisfied:
@ z<uz;
(b) ifzr<yandy< 2z thenz < z;
(c) ifz<yandy <z, thenz = y;
(d) eitherz <yory<uz.
An element z of a linearly ordered set X is said to be maximal (minimal)
if zg <z (if ¢ < x¢) implies o = z forevery z € X.
The following result generalizes Observation 10.
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Proposition 12. If a connected space Y admits a closed linear order with
minimal and maximal elements, then

(7) (X,Y)EGIP foreachspace X.

Proof. Denote by < the linear order on Y, and by y, and y; the minimal and
maximal elements of Y with respectto <. Further, let X, g and K have the same
meaning as in Definition 1. Suppose on the contrary that K N T'(g) = (0, and put

Ko={(z,y)e K:y< 9(33) and y # g(z)},

Ki={(s,9)€K:g(z)<y and y# g(x)}.

Obviously Ky and K are disjointand openin K; and Ko # 0§ # K, since
there are points zo and z; of X such that (zo,y0) € Ko and (21,y;) € K.
Moreover Ky U K, = K, contrary to connectedness of K .

The proof is complete.

Remark 13. With regard to Proposition 12 let us mention that if a topological
space Y with its topology .# admits a closed linear order <, then this order
< induces an order topology .#( <) which is weaker than .#, ie., #(<) C &
(compare Section 7 of [1], p. 43 - 44). Therefore the reader can easily reformulate
Proposition 12 in terms of linearly ordered topological spaces.

Theorem 14. For a connected spaceY the following conditions are equivalent:
(i) thereis a closed linear order on'Y with minimal and maximal elements,
(ii) (X,Y)EGIP foreachspace X;

(iii) (Y,Y)e GIP. -

Proof. The implication (i) — (ii) is just Proposition 12. Obviously (ii) implies
(iii). To complete the circle of implications, assume (iii). Put K = Y x Y \
{(y,y) : y € Y}. Thus mo(K) = Y. It is shown in [1], Theorem I, p. 40,
that a connected space Y admits a closed linear order if and only if the set
K is not connected. Equivalently, if Y does not admit such an order, the set
K is connected, and taking the identity on ¥ as ¢ : ¥ — Y we see that
I'(g9) = {(y,v) : y €Y} is disjoint with K, thus (iii) does not hold.

Therefore we can assume that Y admits a closed linear order. Suppose on
the contrary that the latter part of the conclusion does not hold. Three cases are
possible. 1°. There is a minimal, while there is no maximal element in Y with
respect to the considered order. 2°. There is amaximal, while there is no minimal
element. 3°. Neither minimal nor maximal element does existin Y. Assume 1°,
and let m stand for the minimal element of (Y, <). Forafixed pointz € Y \ {m}
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put K(z) = {(z,y) €Y xY : y < z}, and observe that by connectedness of Y
the sets K () are connected. Since foreach z € Y \ {m}) the set K () intersects
the (connected) set (Y \ {m}) x {m}, the union.

K:U{K(z):xéY\{m}}:{(a:,y)EYXY:y<:c}

is also connected. Of course we have To(K') = Y. Taking again the 1dent1ty on
Yasg:Y — Y wehave K NT(g) = 0, a contradiction to (iii).

Since the cases 2° and 3° can be treated similarly, we conclude that (i)
follows. Thus the proof is complete.

If we additionally assume compactness of the considered space Y, then one
more condition can be joined to the three above of Theorem 14.

Corollary 15. Leta space Y be a continuum. Then every of the conditions (i),
(i) and (iii) of Theorem 14 is equivalent to »
(iv) Y isan arc.

Proof. Surely each arc satisfies (i). Conversely, if (i) is assumed, then an.order
preserving homeomorphism between Y and the closed unit interval [0, 1] can be

constructed in a standard way.

Component intersection arc property.

Now we shall investigate a structural property which is closely related to
existence of a linear order. Using this new property we give partial answers to
Problems A, B and C formulated in the Introduction.

We need some auxiliary notation first. Let points « and b of a space Y be
given. Then we denote by C(a; b) the component of the set Y \ {a} containing
the point b.

Proposition 16. If p and q are distinct points of a connected space Y , then
C(piq)U Clg;p) =

Proof. 1t is shown in [4], §46, III, Theorem 6, p.140 that if a space Y is
connected, then every finite system . (containing at least two elements) of
disjoint connected subsets of Y contains at least two elements P and @ such
that there exists a connected set disjoint from P (respectively from Q) which
contains all the elements of . other than P (respectively other than Q). Let
r€Y, and put.¥ = {{p}, {q}, {r}}. Then we conclude that either r € C(p; q)
or 7 € C(gq; p), so the proof is complete.
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We say that a space Y has the component intersection arc property (shortly
Y € CIAP) provided it is connected, and

(17) C(p;)NC(g;p) = pg\{p.q} foreacharc pqCY.

Remark 18. Note that the inclusion pg \ {p, ¢} C C(p; ¢) N C(g; p) holds true
foreacharc pg C Y.

Proposition 19. If Y € CIAP, then for each arc pg C Y the set C(p;q) is
open.

Proof. Notethat C(p; q) = (C(p; q)\pq)U(pg\{p}). So,itsuffices to show that
the former member of this union is open, while the latter one is contained in the

interior of C(p; ¢). In fact, it follows from (17) that cl C(q; p) = C(¢;p) U {q},
whence by Proposition 16 and (17) again we have C(p; ¢) \pg = Y \ c1 C(q; p),

and thus C(p;q) \ pq is open. Further, take a point = € pq \ {p}. Let ¢, €
pz \ {p,z} C pq. Applying Proposition 16 and (17) once more we conclude as

previously that cl C(qy;p) = C(q1;p) U {q1}, whence

€Y \cC(q;p) = C(p;q1) \ ¢l C(q1;p)
=C(pig)\ elC(q1;p) CintC(p;q).

Thus pq \ {p} C intC(p; q), and the proof is complete.
As an immediate consequence of Proposition 19 and of (17) we get

Corollary 20. If Y € CIAP, then for each arc pg C Y the set pq \ {p,q} is
open.

Proposition 21. IfY € CIAP, then

(22) for each arc pq C Y eachpoint r € pq\ {p, q} disconnects Y into exactly
two open connected subsets, one of which contains p and the other contains

q.
Proof. We show that the two subsets are C'(r; p) and C(r; ¢). Indeed, these sets
are surely connected; they are open by Proposition 19. Further, since

C(rip)=C(g;p)\rq and C(r;q)= C(p;q)\ pr,
we infer from (17) and Proposition 16 that Y \ {r} = C(r; p)U C(r; ¢).Finally,
C(rip)NC(r;q) = (Clg;p)\rq) N (C(p; )\ pr)

C (Clgp)NC(pi )\ (prUrq) =0
by (17). Thus the proof is complete.
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Proposition 23. If a nondegenerate arcwise connected continuum A is contai-
ned in a spaceY suchthatY ¢ CIAP, then A is an arc.

Proof. By the theorem of R.L. Moore (cf. e.g. [4], §47, IV, Theorem 5, p.177)
the continuum A contains at least two points, say p and ¢, which do not separate
A. Thus the sets A \ {p} and A \ {¢} are connected, and we have g € 4 \ {p}
and p € A\ {q}, whence it follows that

A\{p} C C(p;q) and A\ {q} C C(g;p),

and consequently we have

(24) (A\ {p}) N (4\ {g}) C C(pig)N C(q: D).

Since A is arcwise connected, there is an arc pg in A. Since Y € CIAP,
we see that (24) and (17) imply that A \ {p, ¢} C p¢ \ {p, q}.
Taking the closure of both members of this inclusion we get A C pg, so the
conclusion follows.

We shall use Propositions 21 and 23 to show the following result.

Theorem 25. Let a continuum X be arcwise connected, and let Y € CIAP.
Then (X,Y)€e GIP.

Proof. Take a connected subset K of X x Y such that mo(K) = Y, and let
g : X — Y be a mapping. If g is constant, then obviously K N T'(g) # 0. If
g is not constant, the image g(X) of X is an arcwise connected nondegenerate
subcontinuum of Y. Since Y € CI AP, we conclude by Proposition 23 that g( X )
is an arc. Denote it by pg, and suppose on the contrary that (X,Y) ¢ GIP. Thus
there is a connected subset K of X x Y with my(K) =Y and K N I'(g) = 0.
Put

K(p) = {(z,y)eK:g(z)#p and  yeC(g(z);p)}
U {(z,y)eK:g(z)=p ad y¢dC(p;g))},

and

K(q) = {(z,y)eK:g(z)#¢ and yeC(g(z);q)}
U {(z,y)eK:g(z)=q and y¢clC(g;p)}.

It is evident from the above definitions that K(p) U K(¢) = K and
K(p) N K(q) = 0. Further, it follows from Proposition 21 that K (p) and K (q)
are both open in K. Thus K is not connected, a contradiction. The proof is
finished.
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Remarks 26. We show now that no assumption of Theorem 25 can be omitted.
1) Compactness of the space X is essential, because taking the real lineR as
X and as Y simultaneously, we see that X is a noncompact arcwise connected
space, Y € CIAP, while (X,Y) ¢ GIP asitcan be seen from an example of a
translation g : R — R defined by g(z) = = + a for a # 0, whose graph I'(g) is
disjoint with the diagonal K = {(z,z): z € R}. 2) Arcwise connectedness
of the continuum X is also a necessary assumption. For example, let X and Y
be the pseudo-arc P ([4], §48, X, 3, p. 224). Then X is a continuum which is not
arcwise connected, and since P is a hereditarily indecomposable continuum, it
contains no arc, whence it followsthat Y = P € C'I AP (vacuously). However,
it follows from the equivalence (iii) < (iv) of Corollary 15 that (P, P) ¢ GIP.
3) Also the assumption conceming Y, viz. that Y € CTAP or, since YV
is assumed to be connected by Observation 6 that Y satisfies condition (17)
is indispensable in Theorem 25. Namely taking X = Y as the unit circle
= {(z,y) € R? : 22 + y* = 1} we see that X is an arcwise connected
continuum, and that Y is a connected space for which (17) does not hold
(and thus Y ¢ CIAP). The antipodal mapping ¢ : S! — S defined by
g9((z,y)) = (—z,—y) is fixed point free, hence taking K as the diagonal of
51 x S we see that K is connected, 7r2(Ix) = S1 and Kn I'(g) = (0 and
therefore (S, 5') ¢ GIP.

The phenomenon observed in 3) of Remarks 26 has its roots in a much
more general result that is connected with lack of component intersection arc
property for connected spaces Y. Namely CTAP is so close to existence of a
linear ordering that its absence changes the situation drastically. This is described
in the next theorem.

Theorem 27. Let a space X be completely regular, and let a space Y be
connected without having the component intersection arc property. Then

(28) (X,Y)eGIP ifandonlyif X is hereditarily disconnected.

Proof. Oneimplicationis shown in Observation 8. To see the other one, suppose
on the contrary that there exists a nondegenerate component. A of the space X,
and let ¢ and b be distinct points of A. Since the space Y is connected and
Y ¢ CIAP, condition (17) does not hold, i.e., (compare Remark 18) there is an
arc pq in Y such that

C(p;g) N C(g;p)\ pg # 0.

Take a point z € C(p; ¢) N C(g¢; p) \ pq. Since X is completely regular, there is
a mapping g : X — pq such that g(a) = p and ¢g(b) = ¢. By connectedness of
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A it follows that the partial mapping g | A : A — pgq is a surjection. Put
K = (Ax{z})u({a} x C(p;0)) U ({6} x C(g; p)).

It follows from this definition that K is connected and X' N I'(¢) = 0, and
Proposition 16 implies that mo(K) = Y. Thus (X,Y) ¢ GIP and so the proof
is complete.

Note that if a connected space Y contains either a simple triod or a simple
closed curve, then there is an arc pqg in Y for which

C(p;q)NC(q;p)\ pg # 0,

i.e., condition (17) does not hold. Therefore we have a corollary.

Corollary 29. Let a space X be completely regular, and let a connected space
Y contain either a simple triod or a simple closed curve. Then

(28) (X,Y)€eGIP ifandonlyif X is hereditarily disconnected.

As a consequence of Theorem 27 and of Proposition 23 we have the
following result.

Corollary 30. Let a space X be completely regular. If an arcwise connected
continuum Y is not an arc, then

(28) (X,Y) e GIP ifandonly if X is hereditarily disconnected.

Recall that a space Y is said to be indecomposable provided it is connected
and it is not the union of two closed connected sets different from Y. It is known
that no closed connected subset of an indecomposable space is its separator ([4],
§48, V, Theorem 1, p. 207) and that a connected space is indecomposable if and
only if every closed connected proper subset of it is nowhere dense ([4], §48,
V, Theorem 2, p. 207). Therefore if an indecomposable space Y contains an arc
pq, then Y\ pq is a connected dense subset of Y, and thus condition (17) is not
satisfied by virtue of Corollary 20. So we conclude the next two corollaries.

Corollary 31. IfanindecomposablespaceY containsanarc,thenY ¢ CIAP.
Corollary 32. Let a space X be completely regular, and let an indecomposable

space Y contain an arc. Then

(28) (X,Y)€eGIP ifandonlyif X is hereditarily disconnected.
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Remark 33. Indecomposable continua are known each proper subcontinuum
of which is an arc. Such are, e.g. the simplest indecomposable continuum ([4]),
§48, V, Example 1, Fig.4, p.204 and 205) as well as an indecomposable solenoid
(i.e. the inverse limit space of an inverse sequence of circles with open bonding
mappings, infinitely many of whose are not homeomorphisms).These continua
donothave C'I AP according to Corollary 31. On the other hand indecomposable
continua are known that contain no arc. Such is, e.g., the pseudo-arc P, and we
already know that P € CIAP and (P, P) ¢ GIP (see 2 of Remarks 26). Thus
it seems to be natural to modify Problem A asking for what continua X and
connected spaces Y we have (X,Y) € GIP? The following proposition gives
a partial answer to this question.

Proposition 34. If there exists a noncostant mapping g : X — Y from a
continuum X into an indecomposable space Y , then (X,Y) ¢ GIP.

Proof. Since g is noncostant, there are two distinct points ¢ and b of X such
that g(a) # g(b). Let V,, and V,, be disjoint open subsets of Y containing g(a)
and g(b) respectively. Let X, be the component of X \ f~!(V}) containing the
point a. Since X, meets the boundary of f~1(V}) ([4], §47, 111, p.172), it is a
nondegenerate subcontinuum of X such that g( X, 0) 18 a proper nondegenerate
subcontinuum of Y. Let ¢ € Xy \ {a} such that g(c) # g(a). Put

K = (Xo x (¥ \ g(Xo))) U ({a} x (Y \ {g(a)) U ({e} x (Y \ {g(c)})

and observe that my(K) = Y and that K N I'(g) = (. Further, since no
closed connected subset of an indecomposable space is its separator ([4], §48, V,
Theorem 1, p. 207), the differences Y \ g(Xo), Y \ {g(a)} and Y \ {g(¢)} are
connected, whence it follows that K is connected. Thus the proof is complete.

Relations to span.

The graph intersection property, when applied to metric spaces, is closely
related to another known property, namely to having the surjective semispan
zero. The concept of the surjective semispan has been introduced by A. Lelek in
[5], p- 35.

Let (Y, d) be a connected metric space. The surjective semispan oY)
of Y is defined as the least upper bound of the set of all nonnegative real
numbers o such that there exists a connected subset K, of Y x Y with
T (K o) =Y satisfyngthe inequality o < d(y,y;) forall yy, y, € K. Various
results concerning this concept and similarly defined notions of semispan and
span, obtained by several authors (see e.g. [3], references therein and related
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papers) show that among many properties of metric spaces expressed in terms
of surjective semispan the most important is if this number is or is not equal to
zero. In this direction we have the following two observations.

Observation 35. For each connected metric space Y condition

(36) Y,Y)eGIP
implies
(37) oY) =0.

Proof. Assume o5(Y) = o > 0 and note by the definition of o3(Y") that there
is a connected subset K, of Y x Y with mo(K,) = Y and d(y;,y2) > « for
all y1,y2 € K. Taking ¢ = id : Y — Y we see that ['(g) is the diagonal
{(y,y):yeY}of Y x Y, whence K, NT(g) =0,andso (Y,Y) ¢ GIP.

Observation 38. Let a connected metric space 'Y be given. If there are a space
X, amapping g : X — Y and a connected subset K of X x 'Y with

T(K)=Y and KnT(g)=0

such that K is compact, then'Y is a continuum and o (Y') > 0.

Proof. The former conclusion follows from 7, ( K) = Y by compactness of K
and continuity of 7. To see the latter one, put

C={(g9(2),y)eYxY :(z,y)e K}, D={(y.y):yeY},

and observe that C' = (gm; x m)(K'), whence it follows that C' is compact,
To(C) = m(K) =Y,and CND = (because of KNT'(g) = (. Therefore there
isan a > 0 such that d(c,¢c) > a forall (¢y,c3) € C. Thuso3(Y) > a > 0
as needed, which finishes the proof.

Remark 39. It follows from Observation 38 that the class of connected metric
spaces Y such that
(7) (X,Y)e GIP foreach space X

is smaller than the class of spaces Y with of(Y) = 0 just because we do not
require in the definition of the graph intersection property thatthe set K C X xY
is compact.
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