ON DERIVED G-STRUCTURES

L.MARIA ABATANGELO

We study the first order prolongations of derived G-structures (in the sense of P. Dazord [9]) on a differentiable manifold. We give necessary and sufficient conditions (in terms of structure functions) for the complete integrability of the differentiable system associated to a derived G-structure of reducible structure group.

1. Introduction and statement of main results.

In the present note we build on results in [8], [12] and study mainly prolongations of derived G-structures (in the sense of [9]). Let M be a real n-dimensional C^∞ differentiable manifold and $T(M) \to M$ its tangent bundle. Then M admits a canonical imbedding in $T(M)$ as the zero cross-section, i.e. let $j : M \to T(M)$ be given by $j(x) = 0_x \in T_x(M)$, for any $x \in M$. Set $V(M) = T(M) \setminus j(M)$ and denote by $\pi : V(M) \to M$ the natural projection. Note that $V(M)$ is an open submanifold of $T(M)$. We shall need the pullback bundle $\pi^{-1}L(TM) \to V(M)$ of $L(TM)$ by π, where $L(TM) \to M$ is the principal $GL(n, \mathbb{R})$-bundle of linear frames tangent to M. Let G be a Lie subgroup of $GL(n, \mathbb{R})$. Then a derived G-structure on M is a principal G-subbundle $B_G(M) \to V(M)$ of $\pi^{-1}L(TM) \to V(M)$.

In general, if $F \to V$ is a real rank r vector bundle over a C^∞ manifold V, we denote by $L(F) \to V$ the principal $GL(r, \mathbb{R})$-bundle of frames in the fibres of F.

Entrato in Redazione il 19 gennaio 1993.

Work partially supported by MURST, Italy.
F, i.e. $L(F)$ consists of the synthetic objects of the form $z = (u, \{f_1, \ldots, f_r\})$ with $u \in V$ and $f_i \in F_u$, $1 \leq i \leq r$. Let $\pi^{-1}TM \to V(M)$ be the pullback of $T(M)$ by π. Then a Finslerian G-structure on M (cf. [12]) is a principal G-subbundle $B_G(M) \to V(M)$ of $L(\pi^{-1}TM) \to V(M)$. Note that $\pi^{-1}L(TM) \cong L(\pi^{-1}TM)$ (a principal $GL(n, \mathbb{R})$-bundle isomorphism) so that the two view points are equivalent (cf. also our §3). Nevertheless, the constructions of the first order structure functions (of a derived G-structure) in [9], [12] are distinct (the one in [12] depends upon the choice of a nonlinear connection on $V(M)$, and both approaches leave a number of open problems, as follows.

1) The connection between the developement of the theory of derived G-structures in [4], [9], [12] (and more recently [16]-[17]) is not fully understood, as yet.

2) None of the above theories has been applied to an example (other than derived 0 (n)-structures, i.e. Finslerian metrics).

3) There is no convenient notion of "flat" derived G-structures (cf. the comments in [8], pp. 380-381) and corresponding "adapted" coordinate systems.

4) No theory of "prolongations" of derived G-structures has been constructed, as yet (cf. [23] for the theory of prolongations of G-structures and their structure functions).

5) There is no integration of the general theory of derived G-structures with the (rather large) amount of the work done on the determination of the sets of Finslerian connections adapted to a specific derived G-structure (cf. [3], [13], [19], [20], [21], [22]) given in terms of tensor fields, such as Finslerian metrics, Finslerian conformal structures, Finslerian almost complex structures, etc.

The present paper is the first of a series in which the author hopes to address the above unanswered questions. Leaving definitions momentarily aside, we may formulate our main results as follows.

Theorem 1.

i) Let N be a nonlinear connection on $V(M)$, tau a direct summand to $\partial \text{Hom}(F, \mathcal{G})$ in $(F^\ast \wedge F^\ast) \otimes F$, and $B_G(M) \to V(M)$ a derived G-structure on M. Then its first prolongation $B_G(M)^{(1)}_N^{(1), \tau}$ is a $G^{(1)}$-structure on $B_G(M)$. If τ is another complement the corresponding first prolongations of $B_G(M)$ are conjugate, i.e.

\[
B_G(M)^{(1)}_N^{(1), \tau} = B_G(M)^{(1)}_N^{(1), \tau} \rho(S)
\]

for some $S \in \text{Hom}(F, \mathcal{G})$.

ii) Let $B_G(M_i) \to V(M_i)$, $i = 1, 2$, be two isomorphic derived G-structures
and $f : M_1 \to M_2$ a diffeomorphism so that $F(f)(B_G(M_1)) = B_G(M_2)$. Let N_1 be a nonlinear connection on $V(M_1)$ and $N_{2,f_*u} = (d_u f_*) N_{1,u}$, for any $u \in V(M_1)$. Then N_2 is a nonlinear connection on $V(M_2)$ and:

$$L(F(f))B_G(M_1)^{N_1}_{\tau} = B_G(M_2)^{N_2}_{\tau}$$

i.e. the first prolongations of $B_G(M_i)$, $i = 1, 2$, are isomorphic.

In §2 we recollect the material we need on nonlinear connections, horizontal lifts and the Dombrowski map (cf. [10], [14]). The frame bundle technique we use is presented in §3 together with a comparison between the formalism in [9],[12] (cf. our Proposition 1). The first structure function of a derived G-structure is introduced in §4 in a form close to that in [12] (we use an arbitrary nonlinear connection rather then the nonlinear connection of a given regular connection in $\pi^{-1} TM$, and employ properties of the "standard" horizontal vector fields derived in [1]). The sections §5 - §6 are devoted to the proof of our Theorem 1. Especially the proof of the fact that our prolongations give first order information on isomorphism (of derived G-structures) is more delicate (than its classical counterpart in [23]) and organized in our Lemmee 1 to 6. Derived substructures are succinctly studied in §7 where we also hint to some open problem.

Let G be a reducible Lie subgroup of $GL(n, \mathbb{R})$, i.e. there is a proper subspace $V \subseteq \mathbb{R}^n$ invariant by G. In the presence of a derived G-structure, V gives rise to a π-distribution (in the sense of [11]) \mathcal{V} on M. Next \mathcal{V} lifts to a Pfaffian system \mathcal{D} on $V(M)$ (cf. §8) whose integrability in addressed in the following:

Theorem 2. Let $B_G(M) \to V(M)$ be a derived G-structure on M, N a nonlinear connection on $V(M)$, and $\beta : \pi^{-1} TM \to N$ the corresponding horizontal lift. Assume G is reducible and let \mathcal{V} be the associated π-distribution on M. Then $\mathcal{D} = \beta \mathcal{V} \oplus \gamma \mathcal{V}$ is involutive if and only if the first structure function

$$c : B_G(M) \to \frac{((F^* \wedge F^*) \otimes F)}{\partial \text{Hom}(F, \mathcal{D})}$$

of $B_G(M)$ is $\text{Ker}(\overline{\pi})$-valued.

2. Finslerian metrics and nonlinear connections.

The pullback bundle $\pi^{-1} TM \to V(M)$ plays (within Finslerian geometry) a role which is similar to that of the tangent bundle in Riemannian geometry. Precisely, let $E : T(M) \to [0, +\infty)$. Then E is a Finslerian energy function if
i) $E \in C^1(T(M)), E \in C^\infty(V(M))$, ii) E is positive homogeneous of degree 2, i.e. $E(\lambda u) = \lambda^2 E(u)$ for any $\lambda > 0, u \in T(M)$, iii) $E(u) = 0 \iff u = 0$.

To formulate the last axiom, let (U, x^i) be a local coordinate system on M and $(\pi^{-1}(U), x^i, y^i)$ the naturally induced local coordinates on $V(M)$. Define $g_{ij} : \pi^{-1}(U) \to \mathbb{R}$ by setting:

$$g_{ij}(u) = \frac{1}{2} \frac{\partial^2 E}{\partial y^i \partial y^j}(u)$$

for any $u \in \pi^{-1}(U)$. We request that iv) $g_{ij}(u) \xi^i \xi^j \geq 0$ and $= 0 \iff \xi^i = 0$, for any $u \in \pi^{-1}(U)$ and $(\xi^1, \ldots, \xi^n) \in \mathbb{R}^n$, that is the quadratic form $g_{ij}(u)\xi^i \xi^j$ should be positive-definite. A pair (M, E) is a Finslerian manifold. The pullback bundle $\pi^{-1}TM$ of a Finslerian manifold (M, E) is a Riemannian bundle in a natural way. Indeed, let $X : M \to T(M)$ be a tangent vector field on M. Its natural lift is the cross-section $\overline{X} : V(M) \to \pi^{-1}TM$ defined by $\overline{X}(u) = (u, X(\pi(u)))$, for any $u \in V(M)$. Cross-sections in $\pi^{-1}TM$ are usually referred to as Finslerian vector fields on M. Let X_i be the natural lift of the (local) tangent vector field $\frac{\partial}{\partial x^i}, 1 \leq i \leq n$. Then $\{X_1, \ldots, X_n\}$ is a frame field in $\pi^{-1}TM$ on $\pi^{-1}(U)$. Finally, we define an inner product g_u on $\pi_u^{-1}TM = \{u\} \times T_{\pi(u)}(M)$ by setting $g_u(X, Y) = g_{ij}(u)\xi^i \xi^j$, for any $X, Y \in \pi_u^{-1}TM$, where $X = \xi^i X_i(u), Y = \eta^i X_i(u)$. The definition of $g_u(X, Y)$ does not depend upon the choice of local coordinates (U, x^i) at $x = \pi(u)$ and $u \mapsto g_u$ is a Riemannian bundle metric on $\pi^{-1}TM$.

A C^∞ distribution N on $V(m)$ is a nonlinear connection on $V(M)$ if

$$T_u V(M) = N_u \oplus \text{Ker}(d_u \pi)$$

for any $u \in V(M)$. Cf. also [14].

Define a bundle morphism $L : T(V(M)) \to \pi^{-1}TM$ by $L_u X = (u, (d_u \pi)X)$, for any $u \in V(M), X \in T_u(V(M))$. Given a nonlinear connection N on $V(M)$ the restriction $L : N \to \pi^{-1}TM$ is a vector bundle isomorphism. Set $\beta_u = (L_u|_{N_u})^{-1}$ for any $u \in V(M)$. The bundle isomorphism $\beta : \pi^{-1}TM \to N$ is termed horizontal lift (with respect to N).

As to local computations, set $\delta_i = \beta X_i$. Then $\{\delta_i\}$ is a frame field in N on $\pi^{-1}(U)$. One may seek δ_i as a linear combination $\delta_i = M^i_j \partial_j - N^i_j \hat{\partial}_j$, where $\partial_i = \frac{\partial}{\partial x^i}, \hat{\partial}_i = \frac{\partial}{\partial y^i}$ for the sake of simplicity. Apply L so that to yield $M^i_j = \delta^i_j$ (as $L \partial_i = X_i$ and $L \hat{\partial}_i = 0$). The remaining (uniquely determined) functions $N^i_j : \pi^{-1}(U) \to \mathbb{R}$ are the coefficients of the nonlinear connection.
ON DERIVED G-STRUCTURES

N (with respect to (U, x^i)). Let $x'^{ti} = x^{ti}(x^1, \ldots, x^n)$, det $\left[\frac{\partial x'^{ti}}{\partial x^j} \right] \neq 0$ on $U \cap U' \neq \emptyset$, be a transformation of local coordinates on M. Taking into account the identities:

$$X_i = \left(\frac{\partial x'^{tj}}{\partial x^i} \circ \pi \right) X'_j$$

$$\partial_i = \frac{\partial x'^{tj}}{\partial x^i} \partial'_j + \frac{\partial^2 x'^{tj}}{\partial x^i \partial x^k} y^k \partial'_j$$

$$\partial'_i = \frac{\partial x'^{tj}}{\partial x^i} \partial'_j$$

$$\delta_i = \partial_i - N^i_j \partial'_j \quad \delta'_i = \partial'_i - N^i'_j \partial'_j$$

one obtains:

$$\delta_i = \frac{\partial x'^{tj}}{\partial x^i} \delta'_j + \left\{ \frac{\partial x'^{tj}}{\partial x^i} N^k_j \partial'_k - \frac{\partial x'^{tk}}{\partial x^j} N^j_i + \frac{\partial^2 x'^{tk}}{\partial x^i \partial x^j} y^i \right\} \partial'_k. \quad (2.2)$$

Finally, as a consequence of (2.2) and of the uniqueness of the direct sum decomposition (cf. (2.1)) it follows that the coefficients of the nonlinear connection N satisfy the transformation law:

$$\frac{\partial x'^{tj}}{\partial x^i} N^k_j \partial'_k = \frac{\partial x'^{tk}}{\partial x^j} N^j_i - \frac{\partial^2 x'^{tk}}{\partial x^i \partial x^j} y^i. \quad (2.3)$$

Vice versa a set of C^∞ functions N^i_j obeying (2.3) under any coordinate transformation $x'^{ti} = x^{ti}(x^1, \ldots, x^n)$ determines a nonlinear connection on $V(M)$ by setting $N_u = \sum_{i=1}^n \Re (\partial_i - N^i_j \partial'_j) u$. The definition of N_u does not depend (by (2.3)) upon the choice of local coordinates (U, x^i) at $\pi(u)$.

Examples.

1) Let Γ^i_{jk} be a linear connection on M. Then $N^i_j(x, y) = \Gamma^i_{jk}(x)y^k$ is a nonlinear connection on $V(M)$.

2) Let $\mathcal{L} : V(M) \rightarrow \pi^{-1}TM$ be the Finslerian vector field given by $\mathcal{L}(u) = (u, u)$, for any $u \in V(M)$. Then \mathcal{L} is referred to as the Liouville vector field. Let ∇ be a connection in $\pi^{-1}TM \rightarrow V(M)$. A tangent vector field X on $V(M)$ is horizontal (with respect to ∇) if $\nabla_X \mathcal{L} = 0$. The horizontal distribution $N(\nabla) : u \rightarrow N(\nabla) u \subset T_u(V(M))$ of ∇ consists of all $Y \in T_u(V(M))$ so that there is a horizontal tangent vector field X on $V(M)$ with $X(u) = Y$. If
$N(\nabla)$ is a nonlinear connection on $V(M)$ then ∇ is termed regular. Cf. also [2]. If (M, E) is a Finslerian manifold, let ∇ be the Cartan-Chern connection in $(\pi^{-1}TM, g)$. Cf. [5], [7]. Then ∇ is regular. Its nonlinear connection $N(\nabla)$ is (locally) given by:

$$N^i_j = \frac{1}{2} \partial_j \left| \begin{array}{c} i \\ 0 \\ 0 \end{array} \right|$$

$$i \quad j \quad k$$

$$\left| i \right| = i | j k | y_i y_j$$

$$\left| i \right| = g^{im} \left| j k, m \right|$$

$$\left| i j, k \right| = \frac{1}{2} \left(\partial_i g_{jk} + \partial_j g_{ik} - \partial_k g_{ij} \right)$$

In general, a pair (∇, N) consisting of a connection ∇ in the vector bundle $\pi^{-1}TM$ and a nonlinear connection N on $V(M)$ is called a Finslerian connection. Any regular connection gives rise to a Finslerian connection. The converse is false for most of the "canonical" connections of Finslerian geometry (e.g. the Berwald and Rund connections (cf. [18]) are not regular).

3) There is yet another way to look at the nonlinear connection of the Cartan-Chern connection. Let $\gamma : \pi^{-1}TM \to \text{Ker}(d\pi)$ be defined by $\gamma X_i = \partial_i$. Then γ is a (globally defined) bundle isomorphism referred to as the vertical lift. The Dombrowski map is the bundle morphism $K : T(V(M)) \to \pi^{-1}TM$ given $K_u = \gamma_u^{-1} \circ Q_u, u \in V(M)$, where $Q_u = T_u(V(M)) \to \text{Ker}(d_u\pi)$ is the natural projection associated with (2.1). Therefore the construction of K depends on a given fixed nonlinear connection N on $V(M)$. Cf. also [10]. The Sasaki metric of a Finslerian manifold (M, E) is the Riemannian metric G on $V(M)$ defined by:

$$G(X, Y) = g(LX, LY) + g(KX, KY)$$

for any $X, Y \in \Gamma^\infty(T(V(M)))$. Here the Dombrowski map K is built with respect to the nonlinear connection $N(\nabla)$ of the Cartan-Chern connection of (M, E). Let N_u be the orthogonal complement of $\text{Ker}(d_u\pi)$ in $T_u(V(M))$ (with respect to G_u), $u \in V(M)$. Then N is a nonlinear connection on $V(M)$ and $N = N(\nabla)$.
3. Finslerian frame bundles and canonical 1-forms.

Let $\Phi : \pi^{-1} L(TM) \to L(\pi^{-1} TM)$ be given by

$$\Phi(z) = (u, \{(u, X_1), \ldots, (u, X_n)\})$$

for any $z = (u, b) \in \pi^{-1} L(TM)$, where $b = (x, \{X_1, \ldots, X_n\}) \in L(TM)$. Then Φ is a principal $GL(n, \mathbb{R})$-bundle isomorphism.

P. Dazord defines (cf. [9], p. 2730) a 1-form

$$\alpha \in \Gamma^\infty(T^*(\pi^{-1} L(TM)) \otimes \mathbb{R}^n)$$

as follows $\alpha_z = b^{-1} \circ (d_z(\rho))$, $z = (u, b)$, where $\rho : \pi^{-1} L(TM) \to V(M)$ is the natural projection. Note that α is the h-basic form of [18], p. 48. On the other hand, together with [12], we may define the 1-form $\theta^h \in \Gamma^\infty(T^*(\pi^{-1} TM) \otimes \mathbb{R}^n)$ by setting $\theta^h_z = z^{-1} \circ L_u \circ (d_z \rho_1)$, for any $z = (u, \{X_i\})$. Where $X_i \in \pi^{-1} TM$ and $\rho_1 : L(\pi^{-1} TM) \to V(M)$ is the natural projection.

Proposition. The 1-forms α, θ^h coincide up to an isomorphism, i.e.

(3.1) $\alpha_z = \theta^h_{\Phi(z)} \circ (d_z \Phi)$

Proof. To establish (3.1) we look at the following diagram:

$$
\begin{array}{ccc}
T_u(V(M)) & \xrightarrow{L_u} & \pi^{-1} TM \\
\downarrow{d\Phi(z)\rho_1} & & \downarrow{\Phi(z)^{-1}} \\
T_{\Phi(z)}(L(\pi^{-1} TM)) & \xrightarrow{\theta^h_{\Phi(z)}} & \mathbb{R}^n \\
\downarrow{d_z \Phi} & & \downarrow{1_{\mathbb{R}^n}} \\
T_z(\pi^{-1} L(TM)) & \xrightarrow{\alpha_z} & \mathbb{R}^n \\
\downarrow{b^{-1}} & & \\
T_u(V(M)) & \xrightarrow{d_u \pi} & T_x(M)
\end{array}
$$

where $z = (u, b)$ and $x = \pi(u)$. As the upper and lower rectangles are commutative, it is sufficient to check the commutativity of the big rectangle.
Taking into account \(\rho_1 \circ \Phi = \rho \) and \(\Phi(z)^{-1}(u, X) = b^{-1}(X) \), for any \(X \in T_x(M) \), we may conduct the following calculation:

\[
\Phi(z)^{-1} \circ L_u \circ (d_{\Phi(z)} \rho_1) \circ (d_z \Phi) = \Phi(z)^{-1} \circ L_u \circ (d_z \rho) = \\
= \Phi(z)^{-1}(u, (d_u \pi)(d_z \rho)) = b^{-1} \circ d_z(\pi \rho). \quad \Box
\]

In addition to the \(h \)-basic 1-form we define \(\theta^v \in \Gamma^\infty(T^*(L(\pi^{-1}TM)) \otimes \mathbb{R}^n) \) as follows. Let \(N \) be a fixed nonlinear connection on \(V(M) \) and \(K : T(V(M)) \to \pi^{-1}TM \) the corresponding Dombrowski map.

Set \(\theta^v_z = z^{-1} \circ K_u \circ (d_z \rho_1) \), for any \(z \in L(\pi^{-1}TM), u = \rho_1(z) \).

If \(z = (u, \{X_i\}) \) then \(z : \mathbb{R}^n \to \pi^{-1}TM \) is given by \(z(e_i) = X_i \) where \(\{e_i\} \) is the canonical basis of \(\mathbb{R}^n \). Together with [11] let us define \(\theta \in \Gamma^\infty(T^*(L(\pi^{-1}TM)) \otimes F) \) by \(\theta = \theta^h \oplus \theta^v \) where \(F = \mathbb{R}^{2n} = \mathbb{R}^n \oplus \mathbb{R}^n \). We may emphasize the importance of considering the 1-form \(\theta \) (rather than \(\theta^h \) or \(\theta^v \) alone) as follows. Let \(H \) be a horizontal distribution in \(L(\pi^{-1}TM) \to V(M) \), that is the following direct sum decomposition holds:

\[
T_z(L(\pi^{-1}TM)) = H_z \oplus \text{Ker}(d_z \rho)
\]

for any \(z \in L(\pi^{-1}TM) \). From now on we do not distinguish between \(\pi^{-1}L(TM) \) and \(L(\pi^{-1}TM) \), (respectively between \(\rho \) and \(\rho_1 \)). Set \(t_z = (d_z \rho)|_{H_z}, z \in L(\pi^{-1}TM) \). Then \(t_z : H_z \to T_u(V(M)) \) is an \(\mathbb{R} \)-linear isomorphism, \(u = \rho(z) \). Note that neither the \(h \)-basic nor the \(v \)-basic 1-forms may play the role of the canonical 1-form in [15], vol. I, p. 118, as their restrictions \(\theta^h_z, \theta^v_z : H_z \to \mathbb{R}^n \) are not isomorphisms.

Indeed \(\text{Ker}(\theta^h_z) = \text{Ker}(d_z \rho) \oplus t_z^{-1}(\text{Ker}(d_u \pi)) \) and \(\text{Ker}(\theta^v_z) = \text{Ker}(d_z \rho) \oplus t_z^{-1}(N_u), u = \rho(z) \). However \(\text{Ker}(\theta_z) = \text{Ker}(d_z \rho) \) so that \(\theta_z : H_z \to F \) is a \(\mathbb{R} \)-linear isomorphism. Then \(\theta \) is referred to as the canonical 1-form of \((M, N)\).

4. Structure functions.

Let \(B_G(M) \to V(M) \) be a derived \(G \)-structure and

\[
\theta \in \Gamma^\infty(T^*(B_G(M)) \otimes F)
\]

the 1-form induced on \(B_G(M) \) by the canonical 1-form of \((M, N)\). Here \(F = \mathbb{R}^{2n} \) and the nonlinear connection \(N \) is fixed (throughout §4). Together with [12] let us define \(C_H : B_G(M) \to (F^* \wedge F^*) \otimes F \), for a given fixed horizontal distribution \(H \) in \(B_G(M) \to V(M) \), as follows. Let \(\xi \in F \) and denote
by \(H(\xi) \in \Gamma^\infty(H) \) the tangent vector field on \(B_G(M) \) defined by \(\theta(H(\xi)) = \xi \).

Note that \(H(\xi) \) is well defined (as \(\theta_z : H_z \to F \) is an isomorphism, for any \(z \in B_G(M) \)) and \(C^\infty \) differentiable. Cf. [1], \(H(\xi) \) possesses properties which are similar to those of the standard horizontal vector fields in [15], vol. I, p. 119. However \(H(\xi) \) depends on the choice of nonlinear connection \(N \) on \(V(M) \), in addition to the data \((H, \xi) \). Let \(\xi, \eta \in F \) and set:

\[
c_H(z)(\xi \wedge \eta) = (d\theta)_z(H(\xi), H(\eta)).
\]

Let \(\partial : \text{Hom}(F, \mathcal{G}) \to (F^* \wedge F^*) \otimes F \), where \(\mathcal{G} \) is the Lie algebra of \(G \), be defined by \((\partial T)(\xi \wedge \eta) = T(\xi)\eta - T(\eta)\xi \), for any \(T \in \text{Hom}(F, \mathcal{G}) \) and any \(\xi, \eta \in F \). Here \(\mathcal{G} \) acts canonically on \(F = \mathbb{R}^n \oplus \mathbb{R}^n \), i.e. if \(A \in \mathcal{G} \) and \(\xi = \xi_1 \oplus \xi_2 \in F \) then \(A\xi = A\xi_1 \oplus A\xi_2 \).

Let \(H, H' \) be two horizontal distributions in \(B_G(M) \to V(M) \). Then:

\[
(4.1) \quad c_H(z) - c_{H'}(z) = \frac{1}{2} \partial T
\]

for some \(T \in \text{Hom}(F, \mathcal{G}) \) depending only on \(H, H' \), and for any \(z \in B_G(M) \).

For the sake of completeness, let us prove (4.1). Cf. also Theor.4.1 in [12].

As \(H(\xi)_z - H'(\xi)_z \in \text{Ker}(\theta_z) = \text{Ker}(d\xi \rho) \), there is \(T \in \text{Hom}(F, \mathcal{G}) \) so that \(H'(\xi)_z - H(\xi)_z = T(\xi)^* \). Here, for each \(A \in \mathcal{G} \), we denote by \(A^* \in \Gamma^\infty(\text{Ker}(d\rho)) \) the fundamental vector field associated with \(A \), i.e. \(A^*_z = (d\xi L_z)A_e \) for any \(z \in B_G(M) \). Here \(e \in G \) is the unit \(n \times n \) matrix, while \(L_z : G \to B_G(M) \) is given by \(L_z(g) = zg \), for any \(g \in G \). Then:

\[
c_H(z)(\xi \wedge \eta) - c_{H'}(z)(\xi \wedge \eta) = \frac{1}{2} \{ \theta_z([H(\xi), T(\eta)^*]) - \theta_z([H(\eta), T(\xi)^*]) \} = \frac{1}{2} \{ T(\xi)\eta - T(\eta)\xi \}
\]

Here we made use of a formula in [1], i.e. \([A^*, H(\xi)] = H(A\xi) \), for any \(A \in \mathcal{G} \), \(\xi \in F \). Finally, let \(c : B_G(M) \to ((F^* \wedge F^*) \otimes F) / \partial \text{Hom}(F, \mathcal{G}) \) be defined by \(c(z) = \Psi(c_H(z)) \) for any \(z \in B_G(M) \) and any horizontal distribution \(H \) in \(B_G(M) \), where

\[
\Psi : (F^* \wedge F^*) \otimes F \to ((F^* \wedge F^*) \otimes F) / \partial \text{Hom}(F, \mathcal{G})
\]

is the natural map. Then \(c \) is well defined as a consequence of (4.1) and is referred to as the first structure function of the derived \(G \)-structure \(B_G(M) \). This appears to be distinct from the structure functions in [4], [9] and the relation between the three is not fully clear.
5. Prolongations of derived G-structures.

Let $\mathcal{G}^{(1)} = \text{Ker} (\partial) \subset \text{Hom} (F, \mathcal{G})$ be the first prolongation of G. Next consider $\rho : \mathcal{G}^{(1)} \to \text{End}_{\mathbb{R}} (F \oplus \mathcal{G})$ given by $\rho(T) (\xi, A) = (\xi, T(\xi) + A)$, for any $T \in \mathcal{G}^{(1)}$, $\xi \in F$, $A \in \mathcal{G}$. Then ρ is a representation of the additive group $\mathcal{G}^{(1)}$ on $F \oplus \mathcal{G}$.

Let $\{e_1, \ldots, e_{2n}\}$ be the canonical basis of F and $\{A_1, \ldots, A_{n_0}\}$ a fixed basis of \mathcal{G}, $n^0 = \text{dim}_\mathbb{R} \mathcal{G}$. Let $h : \text{End}_{\mathbb{R}} (F \oplus \mathcal{G}) \to GL(2n + n^0, \mathbb{R})$ be the isomorphism associated with the linear basis $\{(e_i, 0), (0, A_\alpha)\}$ of $(F \oplus \mathcal{G})$. Then $G^{(1)} = h(\rho(\mathcal{G}^{(1)}))$ is a Lie subgroup of $GL(2n + n^0, \mathbb{R})$, i.e. the first prolongation of G.

Let τ be a direct summand to $\partial \text{Hom} (F, \mathcal{G})$ in $(F^* \wedge F^*) \otimes F$. Let $\mathcal{H}(\tau)$ be the set of all horizontal distributions H in $B_G(M)$ so that c_H is τ-valued. Clearly $\mathcal{H}(\tau)$ depends on a fixed nonlinear connection N on $V(M)$, as well.

Note that given $H \in \mathcal{H}(\tau)$ the rest of the horizontal distributions in $\mathcal{H}(\tau)$ are parametrized by elements of $\mathcal{G}^{(1)}$. Indeed $H'(\xi)_z - H(\xi)_z = T(\xi)_z$ for some $T \in \text{Hom} (F, \mathcal{G})$ depending only on H, $H' \in \mathcal{H}(\tau)$. Then (4.1) yields $\partial T \in \tau \cap \partial \text{Hom} (F, \mathcal{G}) = (0)$.

Define $B^{(1)} = B_G(M)^{(1), \tau}_N$ to be the set of all linear frames tangent to $B_G(M)$ of the form $(z, \{H(e_i)_z, A^*_\alpha z\})$ for any $z \in B_G(M)$ and any $H \in \mathcal{H}(\tau)$. Let $\pi^{(1)} : L(TB_G(M)) \to B_G(M)$ be the principal $GL(2n + n^0, \mathbb{R})$-bundle of linear frames tangent to $B_G(M)$. To prove that $B^{(1)} \to B_G(M)$ is a $G^{(1)}$-structure note firstly that $\pi^{(1)}(B^{(1)}) = B_G(M)$. Also, it is clear from the definition that for any $z \in B_G(M)$ there is $U \subset B_G(M)$ open, $z \in U$, and there is a cross-section $\sigma : U \to L(TB_G(M))$ so that $\sigma(U) \subset B^{(1)}$. As $B^{(1)}$ is already a submanifold of $L(TB_G(M))$ it remains to be shown that given $r \in B^{(1)}$ and $a \in G^{(1)}$ we have $ra \in B^{(1)}$ if and only if:

\[
G^{(1)} = \left\{ \begin{bmatrix} \delta^i_j & 0 \\ T(e_i) & \delta^\alpha_\beta \end{bmatrix} : T \in \mathcal{G}^{(1)} \right\}
\]

where $T(e_i) = T(E_i)^\alpha A_\alpha$. Next, if $r = (z, \{H(e_i)_z, A^*_\alpha z\}) \in B^{(1)}$ then $ra = (z, \{H(e_j)_z a^i_j + A^*_\alpha, a^\alpha_i, H(e_i)_z a^i + A^*_\alpha z, a^\alpha_i \})$ where $a = \begin{bmatrix} a^i_j & a^\alpha_i \\ a^\alpha_i & a^\beta_\alpha \end{bmatrix} \in GL(2n + n^0, \mathbb{R})$. Thus $ra \in B^{(1)}$ if and only if:

\[
H(e_j)_z a^i_j + A^*_\alpha, a^\alpha_i = H'(e_i)_z
\]

\[
H(e_i)_z a^i + A^*_\alpha, a^\beta_\alpha = A^*_\alpha, z
\]
for some \(H' \in \mathcal{H}(\tau) \). Apply \(\theta_z \) to both (5.1) - (5.2) so that to get \(a_i^z = \delta_i^1 \) and \(a_i^\alpha = 0 \). Again (5.2) gives \(a_\alpha^\beta = \delta_\alpha^\beta \). Finally (5.1) yields \(T(e_i)_z^* = A_{\alpha z}^* a_i^\alpha \) for some \(T \in \mathcal{G}^{(1)} \). Thus \(a \in \mathcal{G}^{(1)} \). \(\square \)

To justify the second statement in i) of our Theorem 1, let \(\overline{\tau} \) so that \((F^* \wedge F^*) \otimes F = \overline{\tau} \oplus \partial \text{Hom}(F, \mathcal{G})\). Set \(\overline{\mathcal{B}}^{(1)} = B_G(M_N^{(1)}, \overline{\tau}) \) for brevity. Let \(\overline{\tau} = (z, \{\overline{H}(e_i)_z, A_{\alpha z}^*\}) \in \overline{\mathcal{B}}^{(1)}, r = (z, \{H(e_i)_z, A_{\alpha z}^*\}) \) for some \(\overline{H} \in \mathcal{H}(\overline{\tau}) \) and \(H \in \mathcal{H}(\tau) \). Then \(\overline{H}(\xi) - H(\xi) = S(\xi)^* \) for some \(s \in \text{Hom}(F, \mathcal{G}) \) and \(\xi \in F \). It follows that \(\overline{\tau} = r\rho(s) \), where

\[
\rho(s) = \begin{bmatrix}
\delta_i^j \\
T(e_i)^\alpha \\
\delta_\alpha^\beta
\end{bmatrix} \in GL(2n + n^0, \mathbb{R}) \]. \(\square \)

6. Isomorphic derived \(G \)-structures.

Let \(B_G(M_i) \to V(M_i) \), \(i = 1, 2 \), be two derived \(G \)-structures. Then \(B_G(M_i) \), \(i = 1, 2 \), are said to be isomorphic if there is a diffeomorphism \(f : M_1 \to M_2 \) so that \(F(f)(B_G(M_1)) = B_G(M_2) \), where \(F(f) : \pi_1^{-1} L(TM_1) \to \pi_1^{-1} L(TM_2) \) is defined by \(F(f)(u, b) = (f_* u, L(f)(b)) \), for any \(z = (u, b) \in \pi_1^{-1} L(TM_1) \). Here \(f_* : V(M_1) \to V(M_2) \) denotes the differential of \(f \) while \(L(f) : L(TM_1) \to L(TM_2) \) is the naturally induced bundle map, i.e. \(L(f)(b) = (f(x), \{(dx)f(X_i)\}) \) for any \(b = (x, \{X_i\}) \in L(TM_1) \).

If \(A \in \mathcal{G} \) then \(\ell_i(A) \in \Gamma^\infty(\text{Ker}(d\rho_i)), i = 1, 2 \), denotes the fundamental vector field associated with \(A \) (previously denoted by \(A^* \)). At this point we may prove ii) of our Theorem 1. To this end we shall need the following:

Lemma 1. Let \(B_G(M_i) \to V(M_i), i = 1, 2 \), be two isomorphic derived \(G \)-structures and \(f : M_1 \to M_2 \) a diffeomorphism so that \(F(f)B_G(M_1) = B_G(M_2) \). Then:

\[
(6.1) \quad F(f)_* \ell_1(A) = \ell_2(A).
\]

Proof. Let \(z \in B_G(M_1) \) and \(L_{1,z} : G \to B_G(M_1) \) given by \(L_{1,z}(g) = zg \), for any \(g \in G \). Then:

\[
F(f) \circ L_{1,z}(g) = F(f)(zg) = F(f)(u, bg) = \left((dx)f(u, L(f)(bg)) \right) = \\
= \left((dx)f(u, L(f)(b)) \right) = F(f)(u, b)g
\]
for any \(z = (u, b) \in B_G(M_1), g \in G \), where \(x = \pi_1(u) \in M_1 \). We have obtained:

\[
F(f) \circ L_{1,z} = L_{2,F(f)(z)}.
\]

Taking into account (6.2) we may conduct the following calculation:

\[
(d_z F(f)) \ell_1(A)_z = (d_z F(f)) \circ (d_e L_{1,z}) A_e = d_e (F(f) \circ L_{1,z}) A_e =
\]

\[
= d_e (L_{2,F(f)(z)}) A_e = \ell_2(A) F(f)(z). \quad \Box
\]

Set \(P_i = \pi_i^{-1} L(TM_i), i = 1, 2 \), for simplicity. The diffeomorphism \(F(f) : P_1 \to P_2 \) induces the natural bundle map

\[
L(F(f)) : L(TP_1) \to L(TP_2),
\]

\[
L(F(f))(z, \{Z_a\}) = (F(f)(z), \{(d_z F(f) Z_a)\}), z \in P_1, Z_a \in T_z(P_1).
\]

This is the map in (1.2). We shall need:

Lemma 2. Let \(H_1 \) be a horizontal distribution in \(B_G(M_1) \to V(M_1) \) and \(H_{2,F(f)(z)} \subset T_{F(f)(z)}(B_G(M_2)) \) defined by:

\[
H_{2,F(f)(z)} = (d_z F(f)) H_{1,z}
\]

for any \(z \in B_G(M_1) \). Then \(H_2 \) is a horizontal distribution in \(B_G(M_2) \to V(M_2) \).

Proof. Note that:

\[
(d_z F(f)) \ker (d_z \rho_1) = \ker (d_{F(f)(z)} \rho_2).
\]

This follows from the identity:

\[
\rho_2 \circ F(f) = f_* \circ \rho_1.
\]

Indeed, it is sufficient (since both sides in (6.4) have the same dimension) to check the inclusion \("\subseteq" \). To this end, let \(X \in \ker (d_z \rho_1) \). Then:

\[
(d_{F(f)(z)} \rho_2) \circ (d_z F(f)) X = d_z (\rho_2 \circ F(f)) X =
\]

\[
= d_z (f_* \circ \rho_1) X = (d_z f_* \circ (d_z \rho_1)) X = 0.
\]

Applying \(d_z F(f) \) to: \(T_z (B_G(M_1)) = H_{1,z} \oplus \ker (d_z \rho_1) \) and using (6.3) - (6.4) shows that \(T_{F(f)(z)}(B_G(M_2)) \) may be written as the sum of \(H_{2,F(f)(z)} \) and \(\ker (d_{F(f)(z)} \rho_2) \). As \(d_z F(f) \) commutes with the intersection the sum is also direct. \(\Box \)
Lemma 3. Let N_1 be a nonlinear connection on $V(M_1)$ and $N_2, f_*(u) \subset T_{f_*(u)}(V(M_2))$ defined by:

$$N_{2, f_*(u)} = (d_u f_*) N_{1, u}$$

for any $u \in V(M_1)$. Then N_2 is a nonlinear connection on $V(M_2)$.

Proof. Note that:

$$d_u f_* \text{ Ker } (d_u \pi_1) = \text{ Ker } (d_{f_*(u)} \pi_2).$$

As both sides in (6.7) have the same dimension, it is sufficient to check one inclusion. Let $X \in \text{ Ker } (d_u \pi_1)$. Then:

$$(d_{f_*(u)} \pi_2) \circ (d_u f_*) X = d_u (\pi_2 \circ f_*) X = d_u (f \circ \pi_1) X = 0$$

Finally, let us apply $d_u f_*$ to $T_u(V(M_1)) = N_{1, u} \oplus \text{ Ker } (d_u \pi_1)$, etc. □

Lemma 4. Let N_1 be a nonlinear connection on $V(M_1)$ and N_2 the nonlinear connection given by (6.6). Let $\theta_i \in \Gamma^\infty \left(T^*(B_G(M_i)) \otimes F \right)$ be the canonical 1-form of $B_G(M_i)$, built with respect to $N_i, \ i = 1, 2$. Then:

$$\theta_2, F(f)(z) \circ (d_z F(f)) = \theta_1, z$$

for any $z \in B_G(M_1)$. Here $F = \mathbb{R}^{2n}, \ n = \dim(M_i), \ i = 1, 2$.

Proof. The following diagram is commutative:

$$
\begin{array}{ccc}
T_u(V(M_1)) & \xrightarrow{d_u f_*} & T_{f_*(u)}(V(M_2)) \\
\downarrow \quad L_{1, u} & & \downarrow \quad L_{2, f_*(u)} \\
\pi_{1, u}^{-1} TM_1 & \xrightarrow{(Df)_u} & \pi_{2, f_*(u)}^{-1} TM_2
\end{array}
$$

for any $u \in V(M_1)$, cf. [1]. Here $(Df)_u$ denotes the restriction of $f_\ast \times f_\ast$ to $\pi_{1, u}^{-1} TM_1$. Moreover

$$\begin{align*}
(Df)_u \circ z &= F(f)(z)
\end{align*}$$

for any $z = (u, b) \in B_G(M_1)$, i.e. the following diagram is commutative:

$$
\begin{array}{ccc}
\pi_{1, u}^{-1} TM_1 & \xrightarrow{(Df)_u} & \mathbb{R}^n \\
\downarrow \quad z & & \downarrow \quad F(f) \\
\pi_{2, f_*(u)}^{-1} TM_2 & &
\end{array}
$$
To check (6.9) let $z = (u, b) \cong (u\{(u, X_i)\})$ where $b = (\pi_1(u), \{X_i\})$. Then $(Df)_u \circ z(e_i) = (Df)_u(u, X_i) = (f_*u, f_*X_i) = F(f)(z)(e_i)$ because $F(f)(z) = (f_*u, L(f)(b)) = (f_*u, (f(x), \{f_*X_i\}) \cong (f_*u, \{(f_*u, f_*X_i)\})$. As $\theta_2 = \theta^h_2 \oplus \theta^v_2$ it is sufficient to prove (6.8) for the h- and v-basic 1-forms. Using the commutative diagrams above we may conduct the following computation:

$$
\theta^h_{2,F(f)(z)} \circ (d_zF(f)) = F(f)(z)^{-1} \circ (d_{2,F_*u} \circ L_{F(f)(z)} \rho_2) \circ (d_zF(f)) =
$$

$$= F(f)(z)^{-1} \circ L_{2,F_*u} \circ d_z(f_* \circ \rho_1) =
$$

$$= F(f)(z)^{-1} \circ (Df)_u \circ L_{1,u} \circ (d_z \rho_1) = z^{-1} \circ L_{1,u} \circ (d_z \rho_1) = \theta^h_{1,z}$$

The proof of (6.8) for the v-basic 1-form θ^v_2 is somewhat trickier. Note firstly the commutativity of the following diagram:

$$
\begin{array}{ccc}
T_{f_*u}(V(M_2)) & \xrightarrow{Q_{2,f_*u}} & \text{Ker}(d_{f_*u} \pi_2) \\
\downarrow d_{uf_*} & & \downarrow d_{uf_*} \\
T_u(V(M_1)) & \xrightarrow{Q_{1,u}} & \text{Ker}(d_u \pi_1)
\end{array}
$$

for any $u \in V(M_1)$, as a consequence of Lemma 3. We retain the identity:

$$
(6.10) \quad Q_{2,f_*u} \circ (d_{uf_*}) = (d_{uf_*}) \circ Q_{1,u}.
$$

Next we need to establish the commutativity of the diagram:

$$
\begin{array}{ccc}
\pi^{-1}_{1,u}TM & \xrightarrow{\gamma_{1,u}} & \text{Ker}(d_u \pi_1) \\
\downarrow (Df)_u & & \downarrow d_{uf_*} \\
\pi^{-1}_{2,f_*u}TM_2 & \xrightarrow{\gamma_{2,f_*u}} & \text{Ker}(d_{f_*u} \pi_2)
\end{array}
$$

To this end, note that the definition of the vertical lift (given in terms of local frames in §2) admits the following coordinate-free reformulation. Let $X = (u, v) \in \pi^{-1}_{1,u}TM_1$ and define the C^∞ curve $c_{1,X} : (-\varepsilon, \varepsilon) \to V(M_1)$ by setting $c_{1,X}(t) = u + tv$, for $|t| < \varepsilon$, $\varepsilon > 0$. Then $\gamma_{1,u}X = \frac{dc_{1,X}}{dt}(0)$. Note that

$$
(6.11) \quad f_* \circ c_{1,X} = c_{2,D(f)_u x}.
$$
Using (6.11) we may perform the following calculation:

\[(d_u f^*) \circ \gamma_{1,u}(X) = d_0(f^* \circ c_{1,x}) \frac{d}{dt} \bigg|_{t=0} = (d_0 c_{2,D(f)_u x}) \frac{d}{dt} \bigg|_{t=0} = \]

\[= \gamma_{2,f_u} \circ (Df)_u X \]

Let us compose with \(\gamma_{2,f_u}^{-1}\) (at the left) in (6.10). We obtain:

\[(6.12) \quad K_{2,f_u} \circ (d_u f^*) = (Df)_u \circ K_{1,u} \]

i.e. the following diagram is commutative:

\[
\begin{array}{ccc}
T_{f_u}(V(M_2)) & \xrightarrow{K_{2,f_u}} & \pi_{2,f_u}^{-1} TM_2 \\
\downarrow d_u f^* & & \downarrow (Df)_u \\
T_u(V(M_1)) & \xrightarrow{K_{1,u}} & \pi_{1,u}^{-1} TM_1
\end{array}
\]

for any \(u \in V(M_1)\). Using (6.12) we have:

\[\theta_{2,F(f)(z)} \circ (d_z F(f)) = F(f)(z)^{-1} \circ K_{2,f_u} \circ (d_{F(f)(z)} \rho_2) \circ (d_z F(f)) = \]

\[= F(f)(z)^{-1} \circ K_{2,f_u} \circ (d_u f^*) \circ (d_z \rho_1) = \]

\[= F(f)(z)^{-1} \circ (Df)_u \circ K_{1,u} \circ (d_z \rho_1) = z^{-1} \circ K_{1,u} \circ (d_z \rho_1) = \theta_{1,z}^v \]

and the proof of Lemma 4 is complete. □

Lemma 5. Let \(H_1\) be a horizontal distribution in \(B_G(M_1) \to V(M_2)\) and \(H_2\) defined by (6.3). Then:

\[(6.13) \quad (d_z F(f)) H_1(\xi)_z = H_2(\xi) F(f)(z) \]

for any \(z \in B_G(M_1), \xi \in F\).

Proof. As a consequence of (6.8) we have \(\theta_{2,F(f)(z)} H_2(\xi) F(f)(z) - (d_z F(f)) H_1(\xi)_z = 0\) so that \(H_{2,F(f)(z)} - (d_z F(f)) H_1(\xi)_z \in H_{2,,F(f)(z)} \cap \text{Ker}(d_{F(f)(z)} \rho_2) = (0)\). □
Lemma 6. Let $\tau \subset (F^* \wedge F^*) \otimes (F)$ be a direct sumand to $\partial \operatorname{Hom}(F, \mathcal{G})$ and H_1 a horizontal distribution in $B_G(M_1)$. Let H_2 be given by (6.3). Then:

$$H_1 \in \mathcal{H}(\tau) \Rightarrow H_2 \in \mathcal{H}(\tau)$$

i.e. c_{H_2} is τ-valued.

Proof. Here c_{H_2} is built from the data (H_2, N_2), where N_2 is given by (6.6). Using the Lemmata 5 and 4 we have:

$$c_{H_2}(F(f)(z))(\xi \wedge \eta) = (d\theta_2)(H_2(\xi), H_2(\eta))_{F(f)(z)} =$$

$$= d(F(f)^*\theta_2)(H_1(\xi), H_1(\eta))_z = (d\theta_1)(H_1(\xi), H_1(\eta))_z = c_{H_1}(z)(\xi \wedge \eta)$$

so that the following diagram:

$$\begin{array}{ccc}
B_G(M_1) & \xrightarrow{c_{H_1}} & (F^* \wedge F^*) \otimes F \\
\downarrow & & \downarrow \circlearrowright \\
B_G(M_2) & \xrightarrow{c_{H_2}} & F(f)
\end{array}$$

is commutative. Our Lemma 6 is proved. \(\square\)

Finally, let $\tau = (z, \{H_1(e_i)_z, e_1(A_{\alpha})_z\})$ be a linear frame tangent to $B_G(M_1)$, adapted to the $G^{(1)}$-structure $B_G(M_1)^{(1),\tau}_{N_1}$, where $H_1 \in \mathcal{H}(\mathcal{G})$. Then:

$$L(F(f))(\tau) = (F(f)(z), \{(d_zF(f))H_1(e_i)_z, (d_zF(f))e_1(A_{\alpha})_z\}) =$$

$$= (F(f)(z), \{H_2(e_i)_{F(f)(z)}, e_2(A_{\alpha})_{F(f)(z)}\}) \in B_G(M_2)^{(1),\tau}_{N_2}$$

as a consequence of our Lemmata 1, 5 and 6. The inclusion $L(F(f))(B_G(M_1)^{(1),\tau}_{N_1}) \subseteq B_G(M_2)^{(1),\tau}_{N_2}$, yields (1.2) since $\dim_{\mathbb{R}} B_G(M_i)^{(1),\tau}_{N_i} = \dim_{\mathbb{R}} G^{(1)} + \dim_{\mathbb{R}} B_G(M_i) = \dim_{\mathbb{R}} G^{(1)} + \dim_{\mathbb{R}} G + 2n$, for $i = 1, 2$. Our Theorem 1 is completely proved.
7. Derived substructures.

Let \(B_G(M) \to V(M) \) be a derived \(G \)-structure on \(M \). If \(G' \) is a Lie subgroup of \(G \) then a \textit{derived substructure} is a principal \(G' \)-subbundle \(B_{G'}(M) \to V(M) \) of \(B_G(M) \to V(M) \). As far as the base manifold is the same, the theory of derived substructures is a direct extension of the classical theory of substructures of a given \(G \)-structure (cf. e.g. [23]) so that we allow ourselves to be somewhat sketchy. If \(H' \) is a horizontal distribution in \(B_{G'}(M) \) and \(H \) an extension of \(H' \) to \(B_G(M) \), then \(c_H \circ j = c_{H'} \), where \(j : B_{G'}(M) \to B_G(M) \) is the given imbedding. Both \(c_H, c_{H'} \) are built with respect to the same given nonlinear connection \(N \) on \(V(M) \) (fixed throughout §7). This follows from \(\theta' = j^* \theta \), where \(\theta, \theta' \) are the canonical 1-forms of \(B_G(M) \), and \(B_{G'}(M) \), respectively. The Lie algebra \(\mathcal{G}' \) of \(G' \) is a subalgebra of \(\mathcal{G} \). Then:

\[
\frac{(F^* \wedge F^*) \otimes F}{\partial \text{Hom}(F, \mathcal{G})} \cong \frac{(F^* \wedge F^*) \otimes F}{\partial \text{Hom}(F, \mathcal{G}')},
\]

(isomorphisms of linear spaces). Thus, for any \(z \in B_{G'}(M) \), \(c(j(z)) \) is the class of \(c'(z) \) modulo \(\partial \text{Hom}(F, \mathcal{G}') \).

More interesting seems to be the case where the base manifolds are distinct. Precisely, let \(B_H(A) \to V(A) \) be a derived \(H \)-structure on a \(C^\infty \) manifold \(A \) and \(N \) a nonlinear connection on \(V(A) \). Let \(G \subset H \) be a Lie subgroup, \(B_G(M) \to V(M) \) a derived \(G \)-structure on \(M \) and \(f : M \to A \) a \(C^\infty \) imbedding. Assume that there is an imbedding \(j : B_G(M) \to B_H(A) \) so that \((j, f_*) \) is a principal bundle monomorphism. It is an open problem to relate the first structure functions of \(B_G(M) \), \(B_H(A) \). One should seek for the natural candidate for the nonlinear connection "induced" on \(V(M) \) by \(N \). If, for instance, \(A \) is a Finslerian manifold and \(N \) the nonlinear connexion of its unique regular Cartan-Chern connection then one may endow \(M \) with the nonlinear connection of the induced connection (and apply the theory developed in [1]).

8. Derived \(G \)-structures with reducible structure group.

Assume \(G \) is \textit{reducible}, i.e. there is a \(G \)-invariant proper subspace \(V \subset \mathbb{R}^n \). Let \(B_G(M) \to V(M) \) be a derived \(G \)-structure. For any \(u \in V(M) \) define \(\mathcal{Y}_u \subset \pi_u^{-1}TM \) as follows. Let \(z \in \rho^{-1}(u) \subset B_G(M) \) and set \(\mathcal{Y}_u = z(V) \). Then \(\mathcal{Y}_u \) is well defined (i.e. the definition does not depend upon the choice of
\[z \in \rho^{-1}(u) \] due to the \(G \)-invariance of \(V \). Then \(\mathcal{Y} : u \mapsto \mathcal{Y}_u \) is a \(\pi \)-distribution on \(M \) (cf. [11], [6]). For any \(u \in V(M) \) define \(\mathcal{D}_u \subset T_u(V(M)) \) by setting \(\mathcal{D}_u = \beta_u \mathcal{Y}_u \oplus \gamma_u \mathcal{Y}_u \). Here \(\beta \) denotes the horizontal lift associated with the nonlinear connection \(N \) on \(V(M) \) (fixed throughout §8). Then \(\mathcal{D} \) is a \(2p \)-dimensional distribution on \(V(M) \), \(p = \dim_{\mathbb{R}} V \). It is our purpose to formulate necessary and sufficient conditions for the integrability of \(\mathcal{D} \) in terms of the structure function \(c \) of \(B_G(M) \).

Lemma 7. Let \(Z \in \Gamma^\infty(T(V(M))) \) and \(\hat{Z} \in \Gamma^\infty(T(B_G(M))) \) so that \(\hat{Z} \) is \(\rho \)-related to \(Z \), i.e. \((d\rho)_z \hat{Z}_z = Z_{\rho(z)} \), for any \(z \in B_G(M) \). Then \(Z \in \mathcal{D} \) if and only if \(\theta(\hat{Z})_z \in V \oplus V \) for any \(z \in B_G(M) \).

Proof. Let \(z \in B_G(M) \), \(u = \rho(z) \). Then \(Z_u \in \mathcal{D}_u \) iff \((d\rho)_u \hat{Z}_z \in \mathcal{D}_u = (\beta \mathcal{Y})_u \oplus (\gamma \mathcal{Y})_u \) i.e. iff:

\[
(8.1) \quad (d\rho)_u \hat{Z}_z = \beta_u z(\xi) + \gamma_u z(\xi_2)
\]

for some \(\xi_1, \xi_2 \in V \). Let us apply \(L_u \), respectively \(K_u \), to the identity (8.1). Thus \(z^{-1} \circ L_u \circ (d\rho) \hat{Z}_z = \xi_1 \) and \(z^{-1} \circ K_u \circ (d\rho) \hat{Z}_z = \xi_2 \) which is equivalent to \(\theta^h(\hat{Z})_z \in V \) and \(\theta^v(\hat{Z})_z \in V \).

Lemma 8. Let \(H \) be a horizontal distribution in \(B_G(M) \to V(M) \). Then the following statements are equivalent:

i) \(\mathcal{D} \) is involutive.

ii) For any \(z \in B_G(M) \):

\[
(8.2) \quad c_H(z)((V \oplus V) \wedge (V \oplus V)) \subset V \oplus V
\]

Proof. Assume i) holds. We wish to compute \(c_H(z)(\xi \wedge \eta) \) for \(z \in B_G(M) \) and \(\xi, \eta \in V \oplus V \). Set \(\xi = \xi_1 \oplus \xi_2, \eta = \eta_1 \oplus \eta_2, \xi_i, \eta_i \in V, \ i = 1, 2 \). Then \(\beta_u z(\xi_1) + \gamma_u z(\xi_2) \) and \(\beta_u z(\eta_1) + \gamma_u z(\eta_2) \) are elements of \(\mathcal{D}_u \), where \(u = \rho(z) \). Next consider \(Y, Z \in \mathcal{D} \) so that \(Y_u = \beta_u z(\xi_1) + \gamma_u z(\xi_2) \) and \(Z_u = \beta_u z(\eta_1) + \gamma_u z(\eta_2) \). This choice is always possible (not unique) by standard theorems on the \(C^\infty \) extension of sections of a vector bundle (here \(\mathcal{D} \)) defined on some closed subset (here \(\{u\} \) of the base space. Let \(\hat{Y}, \hat{Z} \in \Gamma^\infty(H) \) be \(\rho \)-related to \(Y, Z \), respectively. Then

\[
(8.3) \quad H(\xi)_z = \hat{Y}_z.
\]

for \(z \in B_G(M) \) fixed above. Indeed, as both sides of (8.3) are horizontal (with respect to \(H \)) it is sufficient to show that \(\theta(\hat{Y}_z) = \xi \). This follows from the calculation below:

\[
\theta_z(\hat{Y}_z) = (\theta^h \hat{Y})_z \oplus (\theta^v \hat{Y})_z = (z^{-1} \circ L_u \circ (d\rho) \hat{Y}_z) \oplus (z^{-1} \circ K_u \circ (d\rho) \hat{Y}_z) =
\]
\[(z^{-1} L_u Y_u) \oplus (z^{-1} K_u Y_u) = \xi_1 \oplus \xi_2 = \xi.\]

Analogously \(H(\eta)_z = \widehat{Z}_z\). As \(\mathcal{D}\) is involutive \([Y, Z] \in \mathcal{D}\). On the other hand \([\widehat{Y}, \widehat{Z}]\) is \(\rho\)-related to \([Y, Z]\) (cf. Prop.1.3 in [15], vol I, p. 65) so that, by Lemma 7, \(\theta([\widehat{Y}, \widehat{Z}])_z \in V \oplus V\). Therefore:

\[c_H(z)(\xi \wedge \eta) = (d\theta)_z(H(\xi)_z, H(\eta)_z) = (d\theta)_z(\widehat{Y}_z, \widehat{Z}_z) =\]

\[= \frac{1}{2} \{\widehat{Y}_z(\theta(\widehat{Z})) - \widehat{Z}_z(\theta(\widehat{Y})) - \theta([\widehat{Y}, \widehat{Z}])_z\} \in V \oplus V\]

and (8.2) is proved. The proof of ii) \(\Rightarrow\) i) is similar and therefore left as an exercise to the reader.

Let:

\[\tau : (F^* \wedge F^*) \otimes F \to [(V \oplus V)^* \wedge (V \oplus V)^*] \otimes \left[F \over (V \oplus V) \right]\]

be defined by \((\tau L)(\xi \wedge \eta) = \Phi(L(\xi \wedge \eta))\) for any \(L \in (F^* \wedge F^*) \otimes F\) and \(\xi, \eta \in V \oplus V\). Here \(\Phi : F \to {F \over (V \oplus V)}\) is the canonical map. As \(V\) is \(G\)-invariant, it is \(\mathcal{G}\)-invariant, as well. Thus:

\[\partial \text{Hom}(F, \mathcal{G}) \subset \text{Ker}(\tau).\]

and \(\tau\) induces a linear map:

\[\overline{\tau} : \left({F^* \wedge F^*} \otimes F \over \partial \text{Hom}(F, \mathcal{G}^d') \right) \to [(V \oplus V)^* \wedge (V \oplus V)^*] \otimes \left[F \over (V \oplus V) \right]\]

so that \(\tau = \overline{\tau} \circ \Psi\). At this point we may complete the proof of Theorem 2. Assume \(\mathcal{D}\) is involutive.

Then by Lemma 8, for any \(\xi, \eta \in V \oplus V\), \(c_H(z)(\xi \wedge \eta) \in V \oplus V\). Consequently \(\tau(c_H(z)(\xi \wedge \eta)) = \Phi(c_H(z)(\xi \wedge \eta))\) and then \(\overline{\tau}(z) = \overline{\tau}(\Psi(c_H(z))) = \tau(c_H(z)) = 0\) for any \(z \in B_G(M)\). The proof of the converse is similar (and thus omitted).
REFERENCES

Dipartimento di Matematica
Università degli Studi di Bari,
Campus Universitario, v. E. Orabona 4,
70125 Bari (Italia)