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ON DERIVED G-STRUCTURES

L.MARIA ABATANGELO

We study the first order prolongations of derived (G -structures (in the
sense of P. Dazord [9]) on a differentiable manifold. We give necessary
and sufficient conditions (in terms of structure functions) for the complete
integrability of the differentiable system associated to a derived G-structure
of reducible structure group.

1. Introduction and statement of main results.

In the present note we build on results in [8], [12] and study mainly
prolongations of derived GG-structures (in the sense of [9]).
Let M be a real n-dimensional C'* differentiable manifold and T(M) — M
its tangent bundle. Then M admits a canonical imbedding in 7'( M) as the zero
cross-section, i.e. let j : M — T(M) be given by j(z) = 0, € T,(M), for
any z € M. Set V(M) = T(M)\ j(M) and denote by = : V(M) — M
the natural projection. Note that V(M) is an open submanifold of T'(M). We
shall need the pullback bundle =~ L(TM) — V(M) of L(T M) by 7, where
L(TM) — M isthe principal G L(n,R)-bundle of linear frames tangent to M .
Let G be a Lie subgroup of GL(n,R). Then a derived G-structure on M is a
principal G-subbundle Bg(M) — V(M) of 1 ' L(TM) — V(M).

In general, if I — V isareal rank r vector bundle over a C'* manifold V,
wedenote by L(F) — V the principal G L(r, R)-bundle of frames in the fibres of
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F,ie. L(F) consists of the synthetic objects of the form » = (u, {fy,..., fr})
with w € V and f; € F,, 1 < 1 < r.Let 771TM — V(M) be the
pullback of T(M) by . Then a Finslerian G-structure on M (cf. [12]) is a
principal G-subbundle Bs(M) — V(M) of L(z~'TM) — V(M). Note
that 7='L(TM) = L(x~'TM) (a principal GL(n,R)-bundle isomorphism)
so that the two view points are equivalent (cf. also our §3). Nevertheless, the
constructions of the first order structure functions (of a derived G-structure) in
[9], [12] are distinct (the one in [12] depends upon the choice of a nonlinear
connection on V(M ), and both approaches leave a number of open problems,
as follows.

1) The connection between the developement of the theory of derived G-
structures in [4], [9], [12] (and more recently [16]-[17]) is not fully understood,
as yet. _

2) None of the above theories has been applied to an example (other than
derived 0 (n)-structures, i.e. Finslerian metrics).

3) There is no convenient notion of “flat” derived G-structures (cf. the
comments in [8], pp. 380-381) and corresponding "adapted” coordinate systems.

4) No theory of “prolongations” of derived GG-structures has been constructed,
as yet (cf. [23] for the theory of prolongations of G-structures and their structure
functions). '

5) There is no integration of the general theory of derived G-structures with
the (rather large) amount of the work done on the determination of the sets of
Finslerian connections adapted to a specific derived G-structure (cf. [3], [13],
[19], [20], [21], [22]) given in terms of tensor fields, such as Finslerian metrics,
Finslerian conformal structures, Finslerian almost complex structures, etc.

The present paper is the first of a series in which the author hopes to address
the above unanswered questions. Leaving definitions momentarily aside, we may
formulate our main results as follows.

Theorem 1.
i) Let N be a nonlinear connection on V(M), tau a direct sumand to

OHom (F,9) in (F* AN F*)® F,and Bg(M) — V(M) a derived G-structure
on M. Then its first prolongation B (M )S\l,)’T is a G -structure on Bg(M).
If 7 is another complement the corresponding first prolongations of Bg(M) are
conjugate, i.e.

(1.1) Ba(M)Y™ = Bo(M)P" p(5)

for some S € Hom (F,¥9).
ii) Let Bo(M;) — V(M;), i = 1,2, be two isomorphic derived G-structures
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and f : My — M, adiffeomorphismso that F' (f)(Bg(M1)) = Bg(M,). Let
Ny be a nonlinear connectionon V(M) and Ny 5.,y = (dy fo) Ny u, for any
u € V(My). Then N, is a nonlinear connection on V(My) and:

(1.2) L(F ())Ba(M1)§)7 = Ba(Mz)§)7

i.e. the first prolongations of Bg(M;), t = 1,2, are isomorphic.

In §2 we recollect the material we need on nonlinear connections, horizontal
lifts and the Dombrowskimap (cf. [10], [14]). The frame bundle technique we use
is presented in §3 together with a comparison between the formalism in [9],[12]
(ct. our Proposition 1). The first structure function of a derived G'-structure is
introduced in § 4 in a form close to that in [12] (we use an arbitrary nonlinear
connection rather then the nonlinear connection of a given regular connection
in 7~'TM, and employ properties of the “’standard” horizontal vector fields
derived in [1]). The sections §5 - §6 are devoted to the proof of our Theorem 1.
Especially the proof of the fact that our prolongations give first order information
on isomorphism (of derived (-structures) is more delicate (than its classical
counterpart in [23]) and organized in our Lemmae 1 to 6. Derived substructures
are succintly studied in §7 where we also hint to some open problem.

Let G be a reducible Lie subgroup of GL(n,R), i.e. there is a proper
subspace V C R"™ invariant by (. In the presence of a derived G-structure, V
gives rise to a w-distribution (in the sense of [11]) ¥ on M. Next ¥ lifts to
a Pfaffian system 2 on V(M) (cf. §8) whose integrability in adressed in the

following:

Theorem 2. Let Bg(M) — V(M) be a derived G-structure on M, N a
nonlinear connection on V(M ), and 3 : #=1TM — N the corresponding
horizontal lift. Assume G is reducible and let V' be the associated m-distribution
on M.Then 9 = BV @&~V isinvolutive if and only if the first structure function

L (FAF)e )

¢: Bg(M) dHom (F,9)

of Ba(M) is Ker (7)-valued.

2. Finslerian metrics and nonlinear connections.

The pullback bundle 7 =T M — V(M) plays (within Finslerian geome-
try) arole which is similar to that of the tangent bundle in Riemannian geometry.
Precisely, let £ : T(M) — [0, +00). Then F is a Finslerian energy function if
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i) E€CY(T(M)), E € C>(V(M)), ii) E is positive homogeneous of degree
2,ie. E(Au) = A2E(u) forany A > 0, u € T(M), iii) E(u) = 0 & u = 0.
To formulate the last axiom, let (U, z*) be a local coordinate system on M
and (r~'(U), =*, y*) the naturally induced local coordinates on V(). Define -

gij : #~Y(U) — R by setting:

1 9°E
%) =3 gy "

forany u € 7~1(U). We request that iv) g;;(u) €67 > 0 and = 0 & £ = 0, for
any u € 771 (U) and (£',...,£™) € R, that is the quadratic form g;;(u)€i¢d
should be positive-definite. A pair (M, E) is a Finslerianmanifold. The pullback
bundle #~!TM of a Finslerian manifold (M, E) is a Riemannian bundle in
a natural way. Indeed, let X : M — T(M) be a tangent vector field on
M. lts natural lift is the cross-section X : V(M) — 7~ 'TM defined by
X(u) = (u,X(m(u))), for any u € V(M). Cross-sections in 7=1T'M are
usually referred to as Finslerian vector fields on M. Let X; be the natural

lift of the (local) tangent vector field 5% 1 <7 < n. Then {Xy,...,X,}
is a frame field in #=*TM on =~!(U). Finally, we define an inner product
gu on 7 TM = {u} X Treuy(M) by setting g,(X,Y) = g; j(u)€i€d, for
any X,Y € n;'TM, where X = £X;(u), Y = n°X;(u). The definition
of g,(X,Y) does not depend upon the choice of local coordinates (U, z*) at
z = 7(u) and u |- g, is a Riemannian bundle metric on 71T M.

A O distribution N on V' (m) is a nonlinear connectionon V(M) if

2.1) T,V(M)= N, ®Ker(d,r)

forany u € V(M). Cf. also [14].

Define a bundle morphism L : T(V(M)) — =7 'TM by L, X =
(u,(dym)X),foranyu € V(M), X € T,(V(M)).Given anonlinear connection
N on V(M) the restriction L : N — 7~'T M is a vector bundle isomorphism.
Set By = (Lu|n,)”! for any w € V(M). The bundle isomorphism 8 :
7~1TM — N is termed horizontal lift (with respect to V).

As to local computations, set §; = §X;. Then {6;} is a frame field in N

on 7~*(U). One may seek §; as a linear combination é; = M/ 9; — N} éj,

where 0; = % ,0; = aiyi for the sake of simplicity. Apply L so that to yield
T

M J’ = 6; (as L O; = X; and L 9; = 0). The remaining (uniquely determined)

functions N ]’ : #71(U) — R are the coefficients of the nonlinear connection
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1"
N (with respect to (U, z%)). Let 2" = &"(a?,...,2"), det[gw } # 0 on

UNU' # ¢, be atransformation of local coordinates on M . Taking into account

the identities: B’
Xz' = ( 37. (o} 7'(') X;

oz’
817"7 82 7 . 0/
0= 3at it gaiger? 0
° oz’ °
Oi = a7
5 = & — Nid; I - N,-’J'a"j

one obtains:

13 15 1k . 2.1k ) PY
(2.2) 6f=‘9x-6’+{8w NE 9T iy a.“’.yz}a'k.

oz’ ozt Oxd '  .Qzi0xI

Finzilly, asa conseguence of (2.2) and of the uniqueness of the di_réct.sum decom-
position (cf. (2.1)) it follows that the coefficients of the nonlinear connection N

satisfy the transformation law:

Oz N'Ik_ax/k ; 92k
Ozt 4 T Bxd T Bzigws Y

J

(2.3)

Viceversa a set of C'* functions N ; obeying (2.3) under any coordinate
transformation z"* = z"(z!,...,2™) determinés a nonlinear connection on
V3

V(M) by setting N, = Y, R(9; — Nijﬁj)u.‘The definition of N, does not
i=1
depend (by (2.3)) upon the choice of local coordinates (U, z*) at 7 (u).

Examples.

1) Let I" be a linear connection on M. Then N? (:z: y) = I k(:z:)y
nonlinear connectlon on V(M).

2) Let £ : V(M) — ~1TM be the Fmslenan vector field given by
Z(u) = (u,u),forany u € V(M ). Then & is referred to as the Liouville vector
field. Let V be a connectionin 7T M — V(M). A tangent vector field X on
V(M )is horizontal(withrespectto V)if V x ¥ = 0.The horizontal distribution
N(V):u — N(V), C Ty(V(M)) of V consists of all Y € T,(V(M)) so
that there is a horizontal tangent vector field X on V(M) with X (u) = Y. If
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N (V) is a nonlinear connection on V(M) then V is termed regular. Cf. also
[2].If (M, F) is a Finslerian manifold, let ¥V be the Cartan-Chern connection in
(r~'TM,g). Cf. [5],[7). Then V is regular. Its nonlinear connection N (V) is
(locally) given by:

C1e |
Ni= -9,

J 28300

- 2‘7
oo — |jk 7YY
i .

— mm k
ikl =Y | 7k, m|

. 1 |
|ij, k| = 5 (0i gk + 0 gix — Ok gij)

In general, a pair (V, N) consisting of a connection V in the vector bundle
7~'TM and a nonlinear connection N on V(M) is called a Finslerian
connection. Any regular connection gives rise to a Finslerian connection. The
converse is false for most of the ”canonical” connections of Finslerian geometry
(e.g. the Berwald and Rund connections (cf. [18]) are not regular).

3) There is yet another way to look at the nonlinear connection of the Cartan-

Chem connection. Let v : #='TM — Ker (dr) be defined by vX; = 0;.
Then 7 is a (globally defined) bundle isomorphism referred to as the vertical
lift. The Dombrowski map is the bundle morphism K : T(V(M)) — =~ 1TM
given K, = y;' 0 Qy, u € V(M), where Q,, = T, (V(M)) — Ker(d,r)
is the natural projection associated with (2.1). Therefore the construction of K
depends on a given fixed nonlinear connection N on V(M). Cf. also [10]. The
Sasaki metric of a Finslerian manifold (M, E) is the Riemannian metric G’ on

V(M) defined by:
G(X,)Y)=g(LX,LY)+ g(KX,KY)

for any X,Y € I'*°(T(V(M))). Here the Dombrowski map K is built with
respect to the nonlinear connection N (V) of the Cartan-Chem connection of
(M, E). Let N, be the orthogonal complement of Ker (d,7) in T, (V(M))
(with respect to G,), u € V(M ). Then N is a nonlinear connection on V(M)
and N = N(V).
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3. Finslerian frame bundles and canonical 1-forms.

Let®: W_lL(TM) — L(?T_ITM) be given by
@(z) - (u, {(U7X1)7 . ’(U’Xn)})

forany z = (u,b) € 7= L(T M), where b = (z,{X1,...,X,}) € L(TM).
Then @ is a principal G'L(n, R)-bundle isomorphism.
P. Dazord defines (cf. [9], p. 2730) a 1-form

o €T°(T*(x ' L(TM)) @ R™)

as follows a, = b~' o (d,(7p)), z = (u,b), where p : 7~ L(TM) —
V(M) is the natural projection. Note that o is the h-basic form of [18],
p. 48. On the other hand, together with [12], we may define the 1-form
6" € T°(T*(L(r~'TM)) ® R™) by setting 8* = 271 0 L, o (d, p1), for
any z = (u,{X;}). Where X; € 7;'TM and p; : L(r~'TM) — V(M) is
the natural projection.

Proposition. The 1-forms o, 8" coincide up to an isomorphism, i.e.
(3.1) a, =03, 0 (d.P)

Proof. To establish (3.1) we look at the following diagram:

Tu(V(M)) = T M
da(.)P1 : o(z)~!
6% .
T@(Z)(L(W—ITM)) *(2) R™
dz(b l[Rn
T(r " L(TM)) —- R™
b-—l
V(M) —— e To(M)

where z = (u,b) and ¢ = m(u). As the upper and lower rectangles are
commutative, it is sufficient to check the commutativity of the big rectangle.
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Taking into account p; 0 @ = p and ®(z)"!(u,X) = bs1(X), for any
X € T;(M), we may conduct the following calculation:

®(2)"loL,o (de(z)p1) o (d.®) = ®(z)"loL,o0 (d.p) =

= ®(2) " (u, (dur)(dzp)) = b7 0 d;(7p). O

In addition to the h-basic 1-form we define §” € I'°(T*(L(r~1TM)) ®
R™) as follows. Let N be a fixed nonlinear connection on V(M) and K :
T(V(M)) — 71T M the corresponding Dombrowski map.
Set Y = 271 0o K, o (d,p1), forany z € L(r~'TM),u = py(2).
If 2z = (u,{X;}) then z : R™ — = !TM is given by z(e;) = X;
where {e;} is the canonical basis of R™. Together with [11] let us define
O e T(T*(L(r~'TM))®F) by 0 = 6" 38" where F = R*" = R"®R". We
may emphasize the importance of considering the 1-form 6 (rather than 6” or ¥
alone) as follows. Let H be a horizontal distributionin L(r~'TM) — V(M),
that is the following direct sum decomposition holds:

T.(L(x~'TM)) = H, & Ker (d,p)

for any z € L(n~'TM). From now on we do not distinguish between
7~ 1L(TM) and L(rm~'TM), (respectively between p and p;). Set t, =
(d2p)\H,» 2 € L(r~'TM). Then ¢, : H, — T,(V(M)) is an R-linear iso-
morphism, u = p(z). Note that neither the h-basic nor the v-basic 1-forms may
play the role of the canonical 1-form in [15], vol. I, p. 118, as their restrictions
9%, 6Y : H, — R™ are not isomorphisms.

Indeed Ker (6%) = Ker(d,p) @ t;!(Ker(d,7)) and Ker (6?) = Ker(d,p) &
t;1(Ny),u = p(z). However Ker (8,) = Ker(d,p)sothat§, : H, — Fisa
R-linear isomorphism. Then 6 is referred to as the canonical 1-formof (M, N).

4. Structure functions.

Let Bg(M) — V(M) be a derived G-structure and
0 € T°(T*(Ba(M))® F)

the 1-form induced on B (M) by the canonical 1-form of (M, N). Here
F = R?" and the nonlinear connection N is fixed (throughout §4). Together
with [12] let us define Cp : Bg(M) — (F* A F*) ® F, for a given fixed
horizontal distribution H in B (M) — V (M), as follows. Let £ € F and denote
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by H(&) € I'>°(H ) the tangent vector field on B;( M) defined by 0(H (£)) = ¢

Note that H(¢) is well defined (as 6, : H, — F is an isomorphism, for any
z € Bg(M)) and C* differentiable. Cf [1], H(¢) possesses properties which
are similar to those of the standard horizontal vector fields in [15], vol, I, p. 119.

However H (¢) depends on the choice of nonlinear connection N on V(M), in
addition to the data (H,€). Let £, 7 € F and set:

cer(2)(§An) = (d6):(H(E)=, H(n)-).

Let 8 : Hom(F,%) — (F* A F*) ® F, where ¢ is the L1e algebra of G,
be defined by (0T)(é A n) = T(&)n — T(n)¢, for any T € Hom (F,¥) and
any §,n € F. Here ¢ acts canonically on F' = R" @ R™, ie. if A € ¥4 and
£ =6 @& € Fthen A = AL © AL,

Let H, H' be two horizontal distributions in Bg(M) — V( M). Then

(4.1) | ch(z)—cw(z) = = (?T

for some T € Hom ( F, %) depending only on H, H’, and for any z € B (M).
For the sake of completeness, let us prove (4.1). Cf. also Theor4.1 in [12].
As H(¢), — H'(§), € Ker(0,) ‘= Ker(d,p), there is T € Hom (F,¥)
so that H'(§), — H(€), = T(€):. Here, for each A € 4, we denote by
A* € T (Ker (dp)) the fundamental vector field associated with A, ie. A* =
(del,)A, for any z € Bg(M). Here e € G is the unit n x n matrix, while
L,:G— Bg(M)isgivenby L,(g) = zg, for any g € G. Then:

ca(2)(EAN) e (2)(EAn) =

=3 {0 (LH(E), T(n) D)= 6:([H (), T(&)])} = 5 {T(&)n—T(n)¢}

Here we made use of a formulain [1],i.e. [A*, H(€)] = H(A£),forany A € ¢,
£ € F.Finally,let c : Bg(M) — ((F* AN F*) @ F) [ 90Hom (F, %) be defined
by ¢(2) = ¥(cy(z)) for any z € Bg(M ) and any horizontal distribution H in
Bg(M), where :

V:(F*AF)QF)— (F*AF*)® F)/0Hom(F,¥)

is the natural map. Then c is well defined as a consequence of (4.1) and is referred
to as the first structure function of the derived G-structure B (M ). This appears
to be distinct from the structure functions in [4], [9] and the relation between the
three is not fully clear.
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5. Prolongations of derived G-structures.

Let (V) = Ker(9) C Hom (F,%) be the first prolongation of G. Next
consider p : 9() — Endg(F @ ¢) given by p(T)(£, A) = (£, T(€) + A), for
any T €9, e F, Ae¥. Then p is a representation of the additive group
4ODonFoy. |
Let {e1,...,ezn} be the canonical basis of F and {A;,-- -, A0} a fixed basis
of 4, n® = dimg¥. Let h : Endg(F & 9) — GL(2n + n% R) be the
isomorphism associated with the linear basis {(e;,0), (0, 4,)} of (F & €).
Then G() = h(p(9(MV)) is a Lie subgroup of GL(2n + nO,R), i.e. the first
prolongationof G.

Let 7 be a direct sumand to 0Hom (F,¥) in (F* A F*) ® F. Let (1)
be the set of all horizontal distributions H in Bg(M) so that ¢y is T-valued.
Clearly s#(7) depends on a fixed nonlinear connection N on V(M), as well.
Note that given H € J#(7) the rest of the horizontal distributions in % ()
- are parametrized by elements of ¥(V). Indeed H'(£), — H(¢), = T(€)* for
some T' € Hom (F,¥) depending only on H, H' € 5#(7). Then (4.1) yields
0T € TN dHom (F, %) = (0). |

Define B = Bg(M))"" to be the set of all linear frames tangent to
Ba(M) of the form (z, {H (e.),, A% ,}) for any 2 € Bo(M) and any H €
H(1). Let 7)) : L(TBg(M)) — Bg(M) be the principal GL(2n + n°, R)-
bundle of linear frames tangent to B;(M). To prove that B(Y) — Bg (M) is
a G -structure note firstly that 7()(B(1)) = Bg(M). Also, it is clear from
the definition that for any z € Bg(M) there is U C Bg(M)) open, z € U,
and there is a cross-section o : U — I(TBg(M)) so that o(U) C B, As
B is already a submanifold of L(TBg(M)) it remains to be shown that given
r€ BN and a € GO we have ra € BV & a € GV, Note that

8 0
G(l):{[ : a}:Te%“)}
T(ei)a (5[3

where T(ez) = T(Ei)aAa. Next, if r = (Z, {H(ei)zaAZ,z})

€ B then
ra = (2,{H(e;); al + A3 , af, H(e:), ol + A, aB}) where a = [ J ‘
) i aB

o,z )

GL(2n 4+ n° R). Thus ra € BM) if and only if:

(5.1) H(ej): al + Ay, af = H'(e:),

(5.2) H(e;), afy + AE’Z al, = A;,Z
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for some H' € #(1). Apply 6, to both (5.1) - (5.2) so that to get a = 5J and
= 0. Again (5.2) gives ¢® = éP. Finally (5.1) yields T'(e;)* A*’ a¢ for
some T € ). Thusa e GV, 0O
To justify the second statement in 1) of our Theorem 1, let ¥ so that
(F*ANF*)® F = 7@ 0Hom (F,¥). Set B = BG(M)S\?’? for brevity. Let
7= (2,{T(e)s, A% ) € B v = (2, {H(e:)s, A%, }) for some T € 7(7)
and H € 5#(r). Then H(&) — H(E) = S(&)* for some s € Hom (F, %) and
€ € F. It follows thet 7 = 7p(s), where

| 67 0
= t L 0 .
p(S) [T(ei)a 55J GG (2n+ n 7R) u

6. Isomorphic derived G -structures.

Let Bg(M;) — V(M;), i = 1,2, be two derived G-structures. Then
Ba(M;), @ = 1,2, are said to be isomorphic if there is a diffeomorphism f :
My — M, sothat F(f)(Bg(M1)) = Bg(M;), where F(f) : n7 ' L(TM;) —
wy ' L(TM,) is defined by F(f)(u,b) = (fiu, L(f)(b)), for any z = (u,b) €
7 L(TM,). Here f. : V(M;) — V(M,) denotes the differential of f
while L(f) : L(T'M;) — L(T M) is the naturally induced bundle map, i.e.
L(f)(b) = (f(2), {(dof)X:}) forany b = (2, {X:}) € L(T My).

If A€ ¥ then {;(A) e I'™(Ker(dp;)), 7 = 1,2, denotes the fundamental
vector field associated with A (previously denoted by A*). At this point we may
prove ii) of our Theorem 1. To this end we shall need the following:

Lemma 1. Let Bg(M;) — V(M;), i = 1,2, be two isomorphic derived G-
structures and f . My — M, a diffeomorphism so that F(f)Bg(M;) =
Bg(Mz). Then:

(6.1) F(f)ba(A) = £2(A).

Proof. Letz€ Bg(My)and Ly, : G — Bg(M,) givenby L, ,(g) = zg, for
any g € GG. Then:

F(f)o L1.(9) = F(f)(zg9) = F(f)(u,bg) = <(d:cf)’d, L(f)(bg)) -

= ((defyu, L(F)(b)g) = F()(u,b)g
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forany 2 = (u,b) € Bg(M;), g € G, where z = T1(u) € M;. We have
obtained: Lo :

(6.2) F(f)o L1,z = Ly ps)(z)-

Taking into_ account (6.2) we may conduct the following Calculation: M
(sz( ))a(a). = (d.( K (deLl,z) Ae=do(F(f)o LI,Z)A@ =

= de(Lo,F(1)(z))Ae = G(A)F(sy)- O

Set P, = = 1L(TM2-), ¢ = 1,2, for simplicity. The diffeomorphism
F(f): Py — P, induces the natural bundle map

L(F(f)): I(TP) - L(TPy),
L(F(£)) (2:{Za}) = (F(f)(2),{(d-F(f)Za}), z € Py, Zo € To(P1).
This is the map in (1.2). We shall need:

Lemma 2. Let Hy be a horizontal distribution in Bg(M;) — V(Ml) and
Hy,r(1)(2) C Tr(s)(z)(Bo(My)) defined by:

(6.3) Hs,F(5)(z) = (d:F(f))Hy,z

forany z € B;(M,). Then H, is a horizontal distribution in
| Ba(M,) — V(M,).

Proof. Note that:

(6.4) (d-F(f)) Ker (d.p1) = Ker (dr(y(»)p2)-
This follows from the identity:
(6.5) |  moF(f)=fiop.

Indeed, it is sufficient (since both sides in (6.4) have the same dimension) to
check the inclusion ”C”. To this end, let X € Ker(d.py). Then:

(dr(p)p2) o (d:F()) X = da(ps o F(f)X =

=d,(fuop1)X = (dufs)o(dp1) X =0.

Applyingd, F(f) to: T, (BG(Ml)) H, ,®Ker(d,p;) and using (6.3) - (6.4)
shows that Tr(sy(,) (Bc(M;)) may be written as the sum of H, F(f)(z) and
Ker(dr(sy(z)p2). As d,F(f) commutes w1th the intersection the sum is also
direct. O
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Lemma 3. Letr Ny be a nonlinear connection on V(M) and Ny g, c
T, (u) (V(My)) defined by:

(66) , _ . N2,f,.(u) = (duf*)Nl,u

forany uw e V(My). Then N, is a nonlinear connection on V(M).
Proof. Note that:

(6.7) ~ (dufi)Ker(dym) = Ker(dj, (y73).

As both sides in (6.7) have the same dimension, it is sufficient to check one
mclus1on Let X € Ker(d,m). Then:

(df(u)ﬂ'g) (duf )X d (7'('20f*))( d (fOﬂ'l)X""O
Finally, let us apply d,, f. to T,,(V(My)) = Ny, @ Ker(d, 7r1) etc. O

Lemma 4. Let N; be a nonlinear connection on V(M) and N, the nonlznear
connection given by (6.6). Let 8; € I (T*(Bg(M;)) ® F) be the canonical
1-form of Bg(M;), built with respect to N;, i = 1,2. Then:

(6.8) 02, F(£)(2) © (sz(f)) = b1,

forany z € Bg(M,). Here F = R?", n = dim(M;), i = 1,2.
Proof. The following diagram is commutative:

Tu(V(M1)) —28 > Ty () (V(M)

Ll,ul le,f..(u)

-1 -1
Trl,u] Ml (Df)u FZ,f*(u)TMg

for any u € V(My), cf. [1]. Here (D f), denotes the restriction of f, x f, to
1 wT My. Moreover

(6.9) (Df)uoz=F(f)(z)

forany z = (u,b) € Bg(M,), i.c. the following diagram is commutative:

w;;TMl
(Df)u R”

-1
Ty fuu) L M2
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To check (6.9) let z = (u,b) & (u{(u,X;)}) where b = (m(u),{X;}).
Then (D f)y o 2(e;) = (Df)u(u, X;) = (feu, fuXs) = F(f)(z)(e;) because
F(f)(2) = (feu, L(£)()) = (fuu, (f(2), {fsX:}) F (feu, {(feu, £ Xi)})-

Asf, = 036}05 itis sufficient to prove (6.8) forthe h- and v-basic 1-forms. Using
the commutative diagrams above we may conduct the following computation:

HQ,F(f)(z) o(d.F(f)) = F(f)(z)_l © (d2,f...(u) ° Lpsyzp2) o (dF(f)) =
= F(f)(2)™ o Ly g, 0 d:(fuo p1) =

= F(f)(z)"l o(Df)uoLiyo(d.pr)= z7lo Liuo(dp1) = H{L,z

The proof of (6.8) for the v-basic 1-form 67 is somewthat trickier. Note firstly
the commutativity of the following diagram:

Ty ) (V (M) —225) . Ker (dy 4y 72)

oot Jor

T.(V(My)) o Ker(d,m1)

for any u € V(M,), as a consequence of Lemma 3. We retain the identity:

(610) QZ,f*(u) o (duf*) = (duf*) o Ql,u-
Next we need to estabilish the commutativity of the diagram:
7r1—,11LTM T Ker(d,m1)
(Df)ul dy fe
-1
WZ,f*(u)TM2 Yo7 (e Ker(df*(u) 71'2)

To this end, note that the definition of the vertical lift (given in terms of

local frames in §2) admits the following coordinate-free reformulation. Let

X = (u,v) € m; ,TM; and define the C* curve cy,x : (—¢,¢) — V(M)
. d

by setting ¢y () = u + tv, for |t| < e, e > 0. Then y; , X = illt’m(o). Note

that

(6-11) feo Cl,z = €C2,D(f)yz-
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Using (6.11) we may perform the following calculation:

t=0

d d
(duf*) o 1,u(X) = do(fu o Cl,r)gglt:o = (doc2,D(s)uz) E' =

= 72, fu(uw) © (Df)uX

Let us compose with 7, Jl, (u) (8t the left) in (6.10). We obtain:
(6.12) K3, fo(w) 0 (dufs) = (Df)uo Ki

i.e. the following diagram is commutative:

K u —
Ty, (y(V(My)) —Q’f—*(—)“—*”m}*(u)TM?

duf*l l(Df)u

Tu(V(My)) ny o T My

Ky,

for any v € V(M;). Using (6.12) we have:
5 F(5) (=) © (d=F(f)) = F(f)(2)7 o Ky 5. (u) 0 (dr(sy(2)p2) © (d.F(f)) =

= F(f)(z)—l ° I(Z,f,..(u) o (duf*) 0 (dzpl) =
— F(f)(z)_1 o(Df)uo K1yo0(dyp1) = z7lo Kiyo(d.pp) = 0;’72
and the proof of Lemma 4 is complete. 0O

Lemma $. Let Hy be a horizontal distributionin Bg(My) — V(M) and H,
defined by (6.3). Then:

(6.13) (dF(f)H1(£): = Ha(€)r(s)(2)

forany z€ Bg(My), € F.

Proof. As a consequence of (6.8) we have 02 F(£)(2) (Hg(f)p(f)(z) —
(dz F(f)) Hl(f)z) = () so that HQ,F(f)(z) — (sz(f)) Hl(é)z - H2,,F(f)(z) N
Ker(dp(f)(z)pg) =(0). O
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Lemma 6. Let v C (F* A F*)® (F) be a direct sumand to 8Hom (F;¥) and
Hy a horizontal distributionin Bg(My). Let H, be given by (6.3). Then:

H1€%(7)=>H2€%0(T)

i.e. cy, is T-valued.

Proof. Here cp, is built from the data (H,, N;), where N, is given by (6. 6)
Using the Lemmae 5 and 4 we have:

cr (F(f)(2)(EA M) = (d62)(Ha(€), Ha(n)) F(f)(2) =

= d(F(f)"02) (H1(£), Hi(n)): = (d61) (H;(§),H1(77))z = ¢, (2)(E A m)

so that the following diagram:

Bé(Ml)

CH1
F(f) (F*ANF*)® F
\ o
Bg(M),

is commutative. Our Lemma 6 is proved. O

Finally, let r = (z,{H;y(e;i):, e1(As), }) be a linear frame tangent to
Bg(My), adapted to the GV -structure BG(Ml)( ) , where H, € J6(¥9).
Then:

L(E(N)(r) = (F(£)(2), {(d=F(f)Hi(ei),, (dF(f))er(4q):}) =

1),7
= (F(A)(), {Ha(e0)ripys)» ex(Aa)risyo}) € Ba(Ma))
as a consequence of our Lemmae 1, 5 and 6.
The inclusion L(F(f))(BG(Ml)(l) ") C Bg(M;)§) .+ yields (1.2) since

dimg Bo(M;)y)"" = dimgG®) + dimg Bo(M;) = dlmRG(l) + dimgG + 2n,
fori=1,2. Our Theorem 1 is completely proved.
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7. Derived substructures.

Let Bg(M) — V(M) be a derived G-structure on M. If G’ is a
Lie subgroup of G then a derived substructure is a principal G’-subbundle
Bg: (M) — V(M) of Bag(M) — V(M). As far as the base manifold
is the same, the theory of derived substructures is a direct extension of the
classical theory of substructures of a given G-structure (cf. e.g. [23]) so that
we allow ourselves to be somewhat sketchy. If H' is a horizontal distribution
in B/ (M) and H an extension of H' to Bg(M), then ¢y o j = cp, where
Jj : Bgi(M) — Bg(M) is the given imbedding. Both cy, cy are built with
respect to the same given nonlinear connection NV on V(M) (fixed throughout
§7). This follows from 8’ = j*@, where 6, ¢’ are the canonical 1-forms of
Bg(M), and B (M), respectively. The Lie algebra &’ of G’ is a subalgebra
of 4. Then:
(FFAF*)QF (F*ANF*)QF
(F*ANF")® F) ., OHom(F,%') . OHom(F,¥’)
OHom(F,¢¥) ~ OHom(F,¥) ~ @Hom(F, %)
OHom (F,¥") o

(isomorphisms of linear spaces). Thus, forany z € Bg: (M), ¢(j(2)) is the class

of ¢/(z) modulo 0Hom ( F, ;). | N |

More interesting seems to be the case where the base manifolds are distinct.
Precisely, let By(A) — V(A) be a derived H -structure on a C'* manifold
A and N a nonlinear connection on V(A). Let G C H be a Lie subgroup,
Bg(M) — V(M) a derived G-structure on M and f : M — A a C™
imbedding. Assume that there is an imbedding j : Bg(M) — Bpg(A) so
that (7, f.) is a principal bundle monomorphism. It is an open problem to relate
the first structure functions of Bg (M), Bgr(A). One should seck for the natural
candidate for the nonlinear connection “induced” on V(M) by N .If, forinstance,
A is a Finslerian manifold and NV the nonlinear connexion of its unique regular
Cartan-Chemn connection then one may endow M with the nonlinear connection
of the induced connection (and apply the theory developed in [1]). .

8. Derived G-structures with reducible structure group.

Assume G is reducible,i.e. there is a G-invariant proper subspace V C R™.
Let Bg(M) — V(M) be a derived G-structure. For any v € V(M) define
¥, C m;'TM as follows. Let z € p~'(u) C Bg(M) and set %, = 2(V).
Then ¥, is well defined (i.e. the definition does not depend upon the choice of
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z € p~1(u)) due to the G-invariance of V. Then ¥ : u}—¥, is a r-distribution
on M (cf. [11], [6]). For any w € V(M) define 2, C T,,(V(M)) by setting
Dy = BuVy ® v.%,. Here 8 denotes the horizontal lift associated with the
nonlinear connection N on V(M) (fixed throughout §8). Then 2 is a 2p-
dimensional distribution on V (M), p = dimgV'. It is our purpose to formulate
necessary and sufficient conditions for the integrability of 2 in terms of the

structure function ¢ of Bg(M).

Lemma 7. Let Z € T°(T(V(M))) and Z € I°°(T(Bg(M))) so that Z is
p-related o 7, i.e. (d,p)Z, = Z,,),for any z € BG(M).Then Z € 9 if and

only if (Z), €V @& V for any z € Bo(M).

Proof. Let 2 € Ba(M), u = p(z). Then Z, € D, iff (d,p)Z, € D =
(BY)u ® (77)a ie. iff: |

(81) (dzp) z = ﬁu (61) + 7u2(€2)

for some £1,82 € V. Letus apply Lu, respectively K, to the identity (8.1). Thus
1o Lyo(d,p)Z, =& and 2= 0 Ky o o(d,p)Z, = & which is equivalent to
HQ(Z yeVand 62(Z,)eV. O
Lemma 8. Let H be a horizontal distributionin Bg(M) — V(M). Then the
following statements are equivalent:
i) 9 isinvolutive.
ii) Forany z € Bg(M):

(8.2) ca(z)((VeVIAn(VeV)cVeV

Proof. Assume i) holds. We wish to compute cg(2)(€ A 5) for z € Bg(M)
and {,neVaV.Seté =66, n=mdmnlmneV,i=1,2
Then B,2(&1) + yuz(&2) and By z(m) + vu2(n2) are elements of 2,,, where
u = p(z). Next consider Y, Z € 2 so that V,, = [,2(£1) + vu2(&2) and
Zy = Byz(n1)+7vu2(n2). This choice is always possible (not unique) by standard
theorems on the C'*° extension of sections of a vector bundlg (hAere 2) defined
on some closed subset (here {u}) of the base space. Let Y, Z € I'°(H) be
p-related to Y, Z, respectively. Then |

(8.3) H(¢). =7,

for 2 € Bg(M) fixed above. Indeed, as both sides of (8.3) are horizontal (with
respect to H) it is sufficient to show that §(Y,) = £. This follows from the
calculation below:

6.(Y,) = (6"Y), ®(6°Y), = (7 Vo Lyo(dp)P2) & (27 0 Ky (dop)V,) =
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= (Z_lLuYu) S5 (Z—lli’uYu) = 51 D €2 = E

Analogously H(7), = Z,. As 9 is involutive [Y, Z] € 2. On the other hand
[Y, Z] is p-related to [Y, Z] (cf. Prop.1.3 in [15], vol I, p. 65) so that, by Lemma
7,6(lY, Z]), €V @ V. Therefore:

cr(2)(EAD) = (d6)(H(E): H(n).) = (d0).(Ys, Z,) =

= AV.(U2) - 2067 - &7, 2D ) eV o v

and (8.2) is proved. The proof of ii) = 1) is similar and therefore left as an
exercise to the reader.

Let:

r(FAFYQF = [(VOV) AV 6V [Z’%/‘)J

be defined by (rL)(E An) = ®(L(EAn)) forany L € (F* A F*)® F and
_ F
E,neV @V.Here @ @ F —

is the canonical map. As V is G-
Vo) P

invariant, it is ¢ -invariant, as well. Thus:
OHom (F,¥) C Ker (7).
and 7 induces a linear map:

_(FAF)®F
" 0 Hom (F,¥")

~ (Ve V) AVeVle | mets]

so that 7 = 7 o W. At this point we may complete the proof of Theorem 2.
Assume & is involutive.

Then by Lemma 8§, forany £, 7€ V@V, cy(2)(E An) € V @ V. Consequently
T(ea(z)(§ A m)) = (en(2)(€ A 7)) and then T(c(2)) = T(¥(cu(z)) =
T(cy(z)) = 0 for any z € € Bg(M). The proof of the converse is similar
(and thus omitted). '
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