
LE MATEMATICHE
Vol. LXIII (2008) – Fasc. II, pp. 3–18

NILPOTENT GROUPS OF SEMILINEAR TRANSFORMATIONS
WHICH ARE MONOMIAL

ANDREA LUCCHINI - M. CHIARA TAMBURINI

Let H be a nilpotent subgroup of ΓLn(q) = 〈ϕ〉GLn(q), where ϕ de-
notes the field automorfism induced by the Frobenius map. We give a con-
dition on the primes dividing |H ∩GLn(q)| under which H is conjugate to
a subgroup of the generalized monomial group 〈ϕ〉 Diagn(F∗q)Sym(n).
We show an application of this result to the determination of Carter sub-
groups of finite groups.

1. Introduction

Let F be a field. For a subgroup T of F∗, we denote by Diagn(T ) the subgroup
of GLn(F) consisting of diagonal matrices with entries in T . The product of
Diagn(F∗) with the group Sym(n) of permutation matrices is called the mono-
mial subgroup of GLn(F). It is well known that a finite nilpotent group H is an
IM group, i.e. every representation of H over an algebraically closed field of
characteristic 0 or prime to |H|, is monomial [2, Theorem 52.1, page 356]. In
particular, if F is algebraically closed, a finite nilpotent subgroup of GLn(F) of
order prime to the characteristic (when positive), is conjugate to a subgroup of
the monomial group. Clearly this property no longer holds over a finite field.
For example a Sylow 2-subgroup of GL2(3) has order 24, whereas the mono-
mial subgroup has order 23. On the other hand, if q is any power of a prime
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r0, and p is an odd prime such that q ≡ 1 (mod p), the monomial subgroup
of GLn(q) contains a Sylow p-subgroup of GLn(q). And the same holds for
p = 2, provided that q ≡ 1 (mod 4). A similar property is still valid in the
group ΓLn(q) of semilinear transformations, with respect to a natural general-
ization of the monomial group. Let ϕ denote the field automorphism of GLn(q)
induced by the Frobenius map α 7→ αr0 . Thus ΓLn(q) = 〈ϕ〉GLn(q). As ϕ

normalizes Diagn(F∗q)Sym(n), we may consider the product

M := 〈ϕ〉Diagn(F∗q)Sym(n)

and call M the generalized monomial subgroup of ΓLn(q). Under the above
hypothesis on p it is still true that M contains a Sylow p-subgroup of ΓLn(q).
The main aim of this paper is to prove the following generalization of this fact.

Theorem 1.1. Let H be a nilpotent subgroup of ΓLn(q) and assume

H GLn(q) = 〈ψ〉GLn(q)

where ψ ∈ 〈ϕ〉 and r =
∣∣CFq(ψ)

∣∣. Let p1, . . . , pt be the primes which divide
|H ∩GLn(q)| and for j≤ t denote by Rp j =

(
F∗q
)

p j
the Sylow p j-subgroup of F∗q.

Suppose that r ≡ 1 (mod p j) for all j ≤ t, and if |H ∩GLn(q)| is even, suppose
further that q≡ 1 (mod 4). Then, for some g ∈ GLn(q):

Hg ≤ 〈ψ〉 Diagn(Rp1 · · ·Rpt )Sym(n)≤M.

We recall that a Carter subgroup is a nilpotent, selfnormalizing subgroup.
It was established long ago that any finite soluble group contains precisely one
conjugacy class of such subgroups [1]. And it is reasonable to conjecture that
a finite group G can contain at most one conjugacy class of Carter subgroups:
for a positive answer we refer to a recent paper of E.P.Vdovin [14]. Our Theo-
rem 1.1 was partly motivated by an application to the proof of this conjecture.
Namely, assume by contradiction that the conjecture is false, and let X be a
minimal counterexample. Then, by [4], X is an almost-simple group. If H is a
Carter subgroup of X , it is easy to see that every subgroup of X containing H
is selfnormalizing. Applying this observation to the centralizer of an element
z ∈ Z(H), one gets that no other conjugate of z, under X , can lie in Z(H) [12,
Lemma 3.1 (b)]. This argument allows to rule out many classes of almost simple
groups from the possible list of minimal counterexamples to the conjugacy con-
jecture, as done in [12]. On the other hand, when the socle S of X is PSLn(q) or
PSUn(q), for example, this argument breaks down. Our Theorem 1.1 provides
an alternative approach, which essentially rules out the almost simple groups
with socle PSLn(q) from the list, and which can probably be exploited in wider
generality. Namely we prove:
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Corollary 1.2. Let SLn(q)≤A≤ΓLn(q), with q≡ 1 (mod 4). Then the projec-
tive image of A cannot be a minimal counterexample to the conjugacy conjecture
of Carter subgroups.

If A is as in the statement of the previous Corollary, with q odd, and has a
Carter subgroup H of order coprime to q, then H contains a Sylow 2-subgroup
of A (see [14]). When q ≡ 1 (mod 4), an inductive argument on n allows to
deduce this fact from Theorem 1.1 and our concluding result.

Theorem 1.3. Let H be a Carter subgroup of M0 = D〈ψ〉Sym(n) where D ≤
Diagn(F∗q) is normal in M0 and 〈ψ〉≤ 〈ϕ〉. Then H contains a Sylow 2-subgroup
of M0.

2. Notations and basic facts

Let p be a prime. For an integer z > 1 we write z = zp zp′ where zp is a p-power
and p does not divide zp′ . Similarly, for an element g of a group G, we write
g = gp gp′ where gp ∈ 〈g〉 has order a p-power and gp′ has order prime to p.
Finally Gp denotes a Sylow p-subgroup of G. For the reader’s convenience we
recall some well known facts. In particular, a proof of the following Lemma for
p odd is given in [8, Lemma 8.1, page 503].

Lemma 2.1. Let x ∈ N, with x≡ 1 (mod p). Then, for each y ∈ N:

i) (xy−1)p = (xyp−1)p;

ii) (xyp−1)p = (x−1)p yp provided that x≡ 1 (mod 4) if p = 2.

Proof. i) xy−1 = (xyp−1)
(

xyp(yp′−1) + · · ·+ xyp +1
)

. As x ≡ 1 (mod p), the
second factor is congruent to yp′ (mod p). Thus it is not divisible by p.

ii) We set yp = pα . Our claim is clear when α = 0. So let us assume α > 0
and put z = xpα−1

. It follows:

xpα −1 = zp−1 = (z−1)
(
zp−1 + · · ·+1

)
.

By induction (z−1)p = (x−1)p pα−1. From z≡ 1 (mod p):

(
zp−1 + · · ·+1

)
= p+

p(p−1)
2

p+ kp2, k ∈ Z.

Thus, if p > 2, we have
(
zp−1 + · · ·+1

)
≡ p (mod p2). On the other hand, if

p = 2, we are assuming x ≡ 1 (mod 4). It follows that z ≡ 1 (mod 4), hence
z+1≡ 2 (mod 4). In both cases we conclude that

(
zp−1 + · · ·+1

)
p = p.
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As in the Introduction we assume that q is a power of the prime r0 and that
ϕ is the field automorphism of GLn(q) induced by the map α 7→ αr0 .

For a partition n = n1 + · · ·+ n`, we set ΓLn j(q) = 〈ϕ〉GLn j(q), j ≤ `, and
identify (ΓLn1(q)×·· ·×ΓLn`

(q)) ∩ ΓLn(q) with

〈ϕ〉 (GLn1(q)×·· ·×GLn`
(q)) (1)

where

GLn1(q)×·· ·×GLn`
(q) :=


 A1

. . .
A`

 | A j ∈ GLn j(q)

 . (2)

Definition 2.2. We say that a subgroup of ΓLn(q) is indecomposable if it is not
conjugate, under GLn(q), to a subgroup of (1), for any partition of n with ` > 1.

For each j ≤ `, let us denote by π j the projection from (1) onto ΓLn j(q).

Lemma 2.3. Suppose that K is a subgroup of ΓLn(q) contained in (1) and set
K GLn(q) = 〈ϕk〉GLn(q). Then, for each j ≤ `:

i) π j(K)GLn j(q) = 〈ϕk〉GLn j(q);

ii) π j(K)∩GLn j(q)≤ π j (K∩GLn(q)).

In particular the primes which divide the order of π j(K)∩GLn j(q) are a subset
of those which divide the order of K∩GLn(q).

Proof. i) K = 〈ϕkg〉(K∩GLn(q)) for some g ∈ GLn(q). As 〈ϕ〉∩GLn(q) = 1,
the assumption that K is contained in (1) implies that g ∈ (2). Thus π j(ϕkg) =
ϕkg j, for some g j ∈ GLn j(q).

ii) Take j = 1, say, and let x1 ∈ π1(K)∩GLn1(q). Choose y ∈ K such
that y = (x1, · · · ,x`) with x j ∈ ΓLn j(q). From x1 ∈ GLn1(q) it follows eas-
ily that x j ∈ GLn j(q) for all j ≥ 2. Thus y ∈ K ∩GLn(q). We conclude that
x1 ∈ π1 (K∩GLn1(q)).

From now on we fix a factorization |ϕ|= im and set

ψ = ϕ
i, r =

∣∣CFq(ψ)
∣∣ . (3)

Thus
r = ri

0, m = |ψ|, q = rm, F∗r = (F∗q)1+r+···+rm−1
. (4)

Lemma 2.4. Let p be a prime such that r ≡ 1 (mod p) and, if p = 2 and |ϕ| is
odd, assume further that r0 ≡ 1 (mod 4). Denote by Rp a Sylow p-subgroup of
F∗q and by Σp a Sylow p-subgroup of Sym(n). Then:
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1) Rp ≤ F∗rmp ;

2) Γp := 〈ψp〉 Diagn(Rp)Σp is a Sylow p-subgroup of 〈ψ〉GLn(q);

3) Γp ≤ 〈ψ〉GLn(rmp);

4) Γp is (absolutely) irreducible if and only if n is a power of p.

Proof. 1) (q−1)p = (rm−1)p = (rmp−1)p by point i) of Lemma 2.1. 2) We

must show that |GLn(q)|p = ((q−1)p)n |Σp|. In fact

|GLn(q)| = q
n(n+1)

2

n

∏
`=1

(q`−1)

and, by Lemma 2.1, (q`− 1)p = (q`p − 1)p = (q− 1)p `p for each `. 3) Is an

immediate consequence of 1) and 2). 4) Σp is transitive on the canonical basis

{e1, . . . ,en} of Fn
q only if n is a power of p. So this condition is necessary

for the irreducibility of Γp. On the other hand, assume that n is a power of p
and let 0 6= W be a Γp-invariant subspace. Denote by w = α1e1 + · · ·+ αnen a
non-zero vector in W and assume αi 6= 0. Then there exists a diagonal matrix
d = (λ1, . . . ,λn) ∈ Γp with λi 6= 1 and λ j = 1 for all j 6= i. From w−dw ∈W , it
follows that ei ∈W . By the transitivity of Σp the canonical basis is contained in
W , hence W = Fn

q.

Definition 2.5. Considering the factorization into distinct primes

r−1 = pα1
1 · · · pαk

k , α j > 0 (5)

set R = Rp1 · · ·Rpk where Rp j denotes the Sylow p j-subgroup of F∗q .

Note that λ ∈ F∗q and λ r−1 ∈ R implies λ ∈ R. In fact the primes which
divide the order of λ must belong to {p1, . . . , pk}.

Lemma 2.6. For every d ∈ F∗q, the group 〈ψd〉R is a Carter subgroup of 〈ψ〉F∗q.
In particular 〈ψd〉R is conjugate to 〈ψ〉R under F∗q. Moreover every nilpotent
subgroup M of 〈ψ〉F∗q, such that 〈ψ〉F∗q = MF∗q , is contained in a Carter sub-
group of 〈ψ〉F∗q.

Proof. We fix p ∈ {p1, . . . pk}. For every x ∈ Rp we have: xψd = xψ = xr. But
xr ≡ x (mod xp), by the assumption r ≡ 1 (mod p). Thus ψd centralizes each
composition factor of Rp. It follows that (ψd)p′ centralizes Rp. By the same
argument, (ψd)p centralizes Rp′ . We conclude that 〈ψd〉R is nilpotent.
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Now let N = N〈ψ〉F∗q (〈ψd〉R) = 〈ψd〉
(
N∩F∗q

)
and choose λ ∈ N ∩F∗q. By

the definition of N, there exist µ ∈ R and ` ∈ N such that:

λ
−1(ψd)λ = (ψd)`

µ.

On the other hand λ−1(ψd)λ = (ψd)λ 1−r. Thus µλ−1+r ∈ 〈ψd〉. In particular
µλ−1+r ∈ F∗r as it is centralized by ψd. Noting that F∗r ≤ R, we have λ−1+r ∈ R.
Hence λ ∈ R, by the observation after Definition 2.5. We conclude that 〈ψd〉R
is a Carter subgroup of 〈ψ〉F∗q.

Finally let M be as in the statement. Thus M = 〈ψd〉
(
M∩F∗q

)
for some d ∈

F∗q. If p is a prime which divides |M∩F∗q|, then Mp∩F∗q is a non-trivial normal
subgroup of Mp which gives Z(Mp)∩F∗q 6= 1. From Z(Mp)≤ Z(M) centralized
by ψd, we deduce that Z(Mp)∩F∗q is centralized by ψ . Thus Z(Mp)∩F∗q ≤
F∗r , whence p divides r− 1. We conclude that M ∩F∗q ≤ R, which gives M ≤
〈ψd〉R.

Lemma 2.7. Let z ∈GLa(q) be a Singer cycle of order qa−1. Then there exists
ν ∈ GLa(q) such that ψν has order |ψ|a = ma and

N〈ψ〉GLa(q) (〈z〉) = 〈ψν〉〈z〉 with 〈ψν〉∩ 〈z〉= 1.

Proof. The subalgebra 〈z〉∪{0} of Mata(q) can be identified with Fqa . The nor-
malizer in ΓLn(q) of this subalgebra induces a group of automorphisms of Fqa

and the kernel of this action is the centralizer of z. Considering z as a permuta-
tion of F∗qa , it generates an abelian regular group. Thus 〈z〉 is selfcentralizing in
Sym(qa−1) and, a fortiori, in ΓLa(q). In particular F∗qIa ≤ 〈z〉. By definition, ψ

acts as the identity on FrIa. Clearly conjugation by elements of GLa(q) induces
the identity on FrIa. Thus:

N〈ψ〉GLa(q) (〈z〉)
〈z〉

≤ Gal(Fqa : Fr). (6)

min(z) is irreducible over Fq of degree a. It follows that min(z) = char(z). From
min(zψ) = min(zr) we deduce that zψ is conjugate to zr. So there exists µ ∈
GLa(q) such that zψµ = zr, i.e. ψµ normalizes Fqa inducing the automorphism
z 7→ zr. This automorphism generates Gal(Fqa : Fr), which has order ma: thus
ma divides |ψµ| and in (6) we have an equality. It follows:

N〈ψ〉GLa(q) (〈z〉) = 〈ψµ〉〈z〉,
∣∣N〈ψ〉GLa(q) (〈z〉)

∣∣ = |z|ma. (7)

Set (ψµ)ma = zk and note that zk ∈ FrIa since it is centralized by ψµ . By (4),

there exists ` ∈ N such that
(
z`
)1+r+···+rma−1

= z−k. Thus

(ψµ z`)ma = (ψµ)ma(z`)1+r+···+rma−1
= zkz−k = 1.



NILPOTENT GROUPS OF SEMILINEAR TRANSFORMATIONS 9

Setting ν = µz`, we have (ψν)ma = 1 and 〈ψµ〉〈z〉 = 〈ψν〉〈z〉. We conclude
that ψν has order ma and that 〈ψν〉∩ 〈z〉= 1 from (7).

In particular this Lemma gives NΓLa(q) (〈z〉) = Γ1(qa).

3. The main result

The aim of this Section is to prove Theorem 1.1. To this purpose, we fix h ∈ H
such that ψ−1h ∈ GLn(q). Thus:

H = 〈h〉(H ∩GLn(q)). (8)

Lemma 3.1. If |h|= |ψ|, there exists x ∈ GLn(q) such that hx = ψ .

Proof. Let F be the algebraic closure of Fq and Ψ : GLn(F) → GLn(F) the
Frobenius map α 7→ αr. Thus ψ is the restriction of Ψ to GLn(q). Consider the
epimorphism π : 〈Ψ〉GLn(q) → 〈ψ〉GLn(q) defined by

Ψ
jy 7→ ψ

jy, y ∈ GLn(q), j ∈ Z.

By a Theorem of Lang-Steinberg [10], there exists x ∈ GLn(F) such that

ψ
−1h = g = Ψ

−1xΨx−1. (9)

Thus xΨx−1 = Ψg 7→ ψg = h. Now hm = 1 implies that (xΨx−1)m lies in
Ker π = 〈Ψm〉. It follows that xΨmx−1Ψ−m ∈ GLn(F)∩ 〈Ψ〉 = 1. We con-
clude x ∈ CGLn(F)Ψ

m = GLn(q). Thus (9) becomes g = ψ−1xψx−1, whence
hx = ψ .

Lemma 3.2. In the proof of Theorem 1.1 we may assume that H ∩GLn(q) is
non-scalar.

Proof. If H ∩GLn(q) is scalar, we have:

H ∩GLn(q)≤ (Rp1 · · ·Rpt ) In.

From hm ∈ H ∩GLn(q) we deduce that hm = λ In, for some λ ∈ Rp1 · · ·Rpt . It
follows that hm is centralized by ψ−1h∈GLn(q), hence by ψ . This gives λ ∈ F∗r
and, by (4), there exists ρ ∈ F∗q such that ρ1+r+···+rm−1

= λ−1. Write o(ρ) =
pγ1

1 · · · p
γt
t c where (p1 · · · pt , c) = 1. Setting 1 = cy1 +o(λ )y2 we have

(ρ1+r+···+rm−1
)cy1 = (λ−1)cy1 = λ

−1.
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From o(ρc) = pγ1
1 · · · p

γt
t we deduce that µ := ρcy1 ∈ Rp1 · · ·Rpt . Moreover:

(hµ)m = hm
µ

1+r+···+rm−1
= λλ

−1In = In.

By Lemma 3.1, there exists g ∈ GLn(q) such that (hµ)g = ψ . From H ≤
〈h, (Rp1 · · ·Rpt ) In〉 = 〈hµ, (Rp1 · · ·Rpt ) In〉 we get Hg ≤ 〈ψ,(Rp1 · · ·Rpt ) In 〉.

Lemma 3.3. Assume that Theorem 1.1 is false and let n be the smallest degree
for which there exists a counterexample H. Then:

1) H is indecomposable;

2) if H is chosen so that the number t of prime divisors of its order is mini-
mum with respect to all counterexamples of degree n, every prime p which
divides |H| also divides |H ∩GLn(q)|.

Proof. 1) If H is decomposable, we can apply Lemma 2.3 with ` > 1 and K =
Hx, for an appropriate x ∈ GLn(q). By the minimality of n, for each j ≤ ` there
exists g j ∈ GLn j(q) such that

(π j(Hx))g j ≤ 〈ψ〉Diagn j
(Rp1 · · ·Rpt )Sym(n j).

Taking g = (g1, · · · ,g`) we get Hxg ≤ 〈ψ〉Diagn(Rp1 · · ·Rpt )Sym(n).
2) If p does not divide |H ∩GLn(q)|, we have Hp∩GLn(q) = 1, hence

|Hp|= |hp|= |ψp| .

By Lemma 3.1, there exists y ∈ GLn(q) such that hy
p = ψp. Substituting H with

Hy we have that Hp = 〈ψp〉. It follows:

Hp′ ≤C〈ψ〉GLn(q)(ψp) = 〈ψp〉×〈ψp′〉GLn
(
CFq(ψp)

)
.

Hence Hp′ ≤ 〈ψp′〉GLn
(
CFq(ψp)

)
. By the minimality of t, there exists g ∈

GLn(CFq(ψp)) such that Hg
p′ ≤ 〈ψp′〉Diagn(Rp1 · · ·Rpt ))Sym(n). Noting that g

centralizes ψp, we have that H satisfies Theorem 1.1. As this fact contradicts
our assumptions, we conclude that p divides |H ∩GLn(q)|.

Proof. (Theorem 1.1).
Assume that Theorem 1.1 is false and let n, H and t be such that points 1)

and 2) of Lemma 3.3 hold. By Lemma 2.4, t > 1, and by Lemma 3.2, there
exists a non-scalar Sylow p-subgroup P of H ∩GLn(q). Say p = p1, and set

C := CMatn(q)(P), Z = Z(C). (10)
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Thus
H ≤ N〈ψ〉GLn(q)(C), H ≤ N〈ψ〉GLn(q)(Z). (11)

Case 1 P has a unique homogeneous component W , of dimension m, say.
As PW is an irreducible subgroup of GLm(q), a Sylow p-subgroup of GLm(q)
must be irreducible. From q ≡ 1 (mod p), we have that m is a power of p. Z
is a field extension of Fq and we claim that it has order qpα

, for some α ≥ 0.
Indeed, up to conjugation, we may assume

Z∗ = 〈

 z
. . .

z

〉 z irreducible.

The characteristic polynomial c(t) of each block z has degree which divides m.
As c(t) is also the minimum polynomial of z, our claim follows.

1.1 α > 0. Let ψν〈z〉 = N〈ψ〉GLpα (q)(〈z〉), with ψν defined as in Lemma
2.7, with a = pα . The kernel of the homomorphism

f : NGLpα (q)(z)→ Gal(Fqpα : Fq)

induced by the conjugation action, coincides with 〈z〉. From 〈ψν〉∩〈z〉= 1, we
deduce that the restriction of f to 〈ψν〉∩GLpα (q), is injective. Hence 〈ψν〉∩
GLpα (q) is a p-group. It follows that

∣∣(ψν)p′
∣∣ = ∣∣ψp′

∣∣ and, by Lemma 3.1, up
to conjugation under GLpα (q), we may suppose that (ψν)p′ = ψp′ , i.e.

〈ψν〉= 〈(ψν)p〉×〈ψp′〉.

From |z|= qpa −1 with p = p1 and the assumption r ≡ 1 (mod p j), j ≤ k,
it follows that for j≥ 2 the Sylow p j-subgroup of 〈z〉 coincides with Rp j . Hence
it is scalar. Let Rp be the Sylow p-subgroup of 〈z〉. By Lemma 2.6, with ψ and
q replaced respectively by ψν and qpα

, the group

〈ψν〉Rp Diagpα (Rp2 · · ·Rpt ) = 〈(ψν)p〉Rp 〈ψp′〉 Diagpα (Rp2 · · ·Rpt )

is a Carter subgroup of 〈ψν〉〈z〉. In particular 〈(ψν)p〉Rp is centralized by ψp′ ,
hence:

〈(ψν)p〉Rp ≤ 〈ψ〉GLpα (rmp).

Note that, if p = 2 and imp is odd, then |ϕ|= im is odd and, in this case, we are
assuming r0 ≡ 1 (mod 4). So, by Lemma (2.4), there exists x ∈GLpα (rmp) such
that

(
〈(ψν)p〉Rp

)x lies in 〈ψ〉Diagpα (Rp)Sym(pα). Substituting z with zx we
may suppose:

〈ψν〉Rp ≤ 〈ψ〉Diagpα (Rp)Sym(pα). (12)
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1.1.1 n = pα . In this case Z∗ = 〈z〉, hence H ≤ 〈ψν〉〈z〉. By Lemma 2.6,
up to conjugation under 〈z〉, we may suppose H ≤ 〈ψν〉Rp (Rp2 · · ·Rpt ) In.

Hence H satisfies Theorem 1.1 in virtue of (12).
1.1.2 n > pα . From F∗qIn ≤ 〈Z〉 and C〈ψ〉GLn(q)(F∗qIn) = GLn(q):

C〈ψ〉GLn(q)(Z) = CGLn(q)(Z) = GL n
pα

(
qpα
)

. (13)

Thus, by (11), setting Ψ = ψ (ν , · · · ,ν) with ν ∈ GLpα (q) as above:

H ≤ N〈ψ〉GLn(q)(Z) = 〈Ψ〉 GL n
pα

(
qpα
)

. (14)

Note that 〈Ψ〉 intersects trivially GL n
pα

(
qpα)

as the automorphism induced by

Ψ on the center of GL n
pα

(
qpα)

has order mpα = |Ψ|. From

H ∩GL n
pα

(qpα

) ≤ H ∩GLn(q)

and our assumptions on n, there exists g ∈ GL n
pα

(
qpα)

such that

Hg ≤ 〈Ψ〉Diag n
pα

(
Rp (Rp2 · · ·Rpt )

)
Sym

(
n
pα

)
.

We have that H satisfies Theorem 1.1 in virtue of (12), recalling the definition
of Ψ given just before (14).

1.2 α = 0. In the notation of (2), up to conjugation under GLn(q) we may
suppose that P≤ GLu(q)×·· ·×GLu(q) = (GLu(q))` and, moreover, that:

P =


 A

. . .
A

 | A ∈ π1(P)

 = π1(P)⊗ I`

where π1(P) is an absolutely irreducible subgroup of GLu(q). It follows:

C = CMatn(q)(P) = Iu⊗Mat`(q) (15)

CMatn(q)(C) = Matu(q)⊗ I`. (16)

By a result of Skolem-Noether [3, Theorem 3.62, page 69], every automorphism
of Mat`(q) which induces the identity on the center is inner. Hence:

N = N〈ψ〉GLn(q)(C) = 〈ψ〉GLu(q)⊗GL`(q). (17)

Let let h be as in (8). Recalling that H ≤ N we have Hp = 〈hp〉P with:

hp = ψp a⊗b, a ∈ GLu(q), b ∈ GL`(q). (18)
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We claim that, up to conjugation under GL`(q), we may suppose b scalar. In-
deed, call e the order of ψp. Then:

he
p = a1+ψ+...ψe−1⊗b1+ψ+...ψe−1 ∈ P.

This forces b1+ψ+...ψe−1
to be scalar, i.e. (ψpb)e = ρI`. Clearly ψpb centralizes

ρI`, hence ρ ∈ CFq (ψp). It follows from (4) that ρ = λ 1+ψ+...ψe−1
for some

λ ∈ Fq. So ψpbλ−1 has the same order e of ψp and our claim follows from
Lemma 3.1. So in (18) we may assume b scalar, i.e.

Hp ≤ 〈ψp〉GLu(q)⊗ I`

and it makes sense to consider the projection π1 : Hp→ 〈ψp〉GLu(q).
In particular CMatn(q) (π1 (P)) = FqIn. So, if we set CFq (ψp) = Fq0 , then:

CMatu(q) (π1 (Hp)) = Fq0Iu. (19)

From (15) and (19) it follows:

CMatn(q) (Hp) = Iu⊗Mat`(q0). (20)

Under our assumptions, there exists a Sylow p-subgroup Γu,p of 〈ψ〉GLu(q)
which is monomial. Noting that ψ normalizes Γu,p, up to conjugation under
GLu(q) we may assume π1 (Hp) ≤ Γu,p. So we have Hp ≤ Γp where Γp is
defined as in Lemma 2.4. Clearly Hp′ ≤

〈
ψp′
〉

GLn(q). By Lemma 2.6 ψp′

centralizes Γp and, a fortiori, Hp. Hence

Hp′ ≤C〈ψp′ 〉GLn(q)(Hp) = 〈ψp′〉(Iu⊗GL`(q0)) .

By the minimality of n, there exists x ∈ Iu⊗GL`(q0) such that Hx
p′ is monomial.

Since x centralizes Hp, this completes this case.

Case 2 The homogeneous components of P are more than one. They are
permuted transitively by h, defined in (8), since H is indecomposable. Let M be
a maximal subgroup of H containing the stabilizer of a component V0 and call
W the subspace generated by {m(V0) | m ∈M}. Then M is a normal subgroup
of prime index s and

Fn
q = W ⊕h(W )⊕·· ·⊕hs−1(W )

where each direct summand is stabilized by M. Thus, in the notation of (2), we
may assume that H is a subgroup of

〈ψ〉
(

GL n
s
(q)×·· ·×GL n

s
(q)
)
〈σ〉 = 〈ψ〉 GL n

s
(q)s 〈σ〉 (21)
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where σ is a permutation matrix of order s, which permutes the direct factors of
GL n

s
(q)s and

Hs′ ≤M ≤ 〈ψ〉 GL n
s
(q)s. (22)

Let η be a preimage of σ in Hs. Thus:

η = ψ
`
σ(y1, · · · ,ys) (23)

where ψ` can be chosen to be an s-element and each y j ∈ GL n
s
(q).

We will use the fact that, for each g = (g1, · · · ,gs) ∈ GL n
s
(q)s:

η
(g1,··· ,gs) = ψ

`
σ(y1, · · · ,ys), y j ∈ GL n

s
(q). (24)

Since we are assuming that point 2) of Lemma 3.3 holds, we can say s = pt .
Recalling (22) and the minimality of n, after a first conjugation of H by some
g ∈ GL n

s
(q)s, we can suppose that

Hs′ ≤ 〈ψ〉
(

Diag n
s
(Rp1 · · ·Rpt−1)Sym(

n
s
)
)s

.

Recalling (23) this conjugation takes η into an element of the same shape. Note
that

Rp1 · · ·Rpt−1 ≤ Frmp1 ...mpt−1

as a consequence of point 2) of Lemma 2.4. It follows that ψ`, whose order
divides ms = mpt , centralizes Hs′ . Imposing that η centralizes Hs′ we see that,
up to a new conjugation by some element in GL n

s
(q)s, we may assume that Hs′

consists of elements of shape:

ψ
`

 x
. . .

x

 , x ∈ GL n
s
(q).

Set G := 〈ψ〉 GL n
s
(q)s〈σ〉 and let S be a Sylow s-subgroup of CG(Hs′) which

contains Hs. Then Ĥ := S×Hs′ is nilpotent and H ≤ Ĥ ≤ G. As σ centralizes
Hs′ , there exists c ∈CG(Hs′) such that σ ∈ Sc. Then

Ĥc = 〈σ〉
(

Ĥc∩〈ψ〉GL n
s
(q)s

)
.

The conjugation action of σ on the second factor implies that, for each j≤ s,
π j

(
Ĥc∩〈ψ〉GL n

s
(q)s

)
= π1

(
Ĥc∩〈ψ〉GL n

s
(q)s

)
Moreover, by the minimal-

ity of n, there exists g0 ∈ GL n
s
(q) such that(

π1

(
Ĥc∩〈ψ〉GL n

s
(q)s

))g0
≤ 〈ψ〉 Diag n

s
(Rp1 · · ·Rpt )

(n
s

)
.

Taking g := (g0, . . . ,g0) we have that σg = σ , hence

Hg ≤ Ĥg ≤ 〈ψ〉 Diag(Rp1 · · ·Rpt )Sym(n).
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4. An application to Carter Subgroups

Denote by FG the set of conjugacy classes of Carter subgroups of a finite group
G. As an easy consequence of [1], it is shown in [11] the following.

Lemma 4.1. Let N be a finite normal solvable subgroup of G. The canonical
epimorphism π : G→ G/N induces a bijection π̂ : FG→ FG/N .

So the conjugacy conjecture holds for G if and only if it holds for G/N.

Lemma 4.2. For each n≥ 2:

1) Two semisimple elements of GLn(q) are conjugate under GLn(q) if and
only if they are conjugate under SLn(q);

2) the Jordan unipotent block Jn is conjugate to its inverse under GLn(Z);

3) if q ≡ 1 (mod 4), then every element z of order r0 is conjugate to its
inverse under SLn(q).

Proof. 1) A consequence of the fact that the centralizer of a semisimple element
contains matrices of all possible determinants. Enough to see this fact for the
companion matrix m of an irreducible polynomial. The algebra generated by m
over Fq is a field, whose multiplicative group is generated by a Singer cycle c of
order qn−1. As 〈c〉∩SLn(q) has index q−1 in 〈c〉 [7, Satz 7.3, page 187], the
determinant of c generates F∗q.

2) Set A1 :=
(
−1

)
and, for s≥ 1, As+1 :=

(
JsAs

(−1)s+1

)
.

Then (As+1)2 = I and As+1Js+1As+1 = J−1
s+1. In fact, by induction:

As+1Js+1As+1 = As+1

(
Js

es 1

)
As+1 =

(
J−1

s
(−1)s+1esJsAs 1

)
.

The conclusion follows noting that (−1)ses = esAs, hence

(−1)s+1esJsAs = −(−1)sesJsAs = −esAsJsAs = −esJ−1
s .

3) By the previous result, modulo r0, each block Jm of the Jordan form
of z is conjugate to J−1

m , via Am. Our claim follows from the fact that Am has
determinant 1 if m≡ 0,3 (mod 4) and has determinant−1 if m≡ 1,2 (mod 4).
But in the second case, the assumption q ≡ 1 (mod 4) ensures that in SLn(q)
there are scalar matrices of determinant −1.

A more general statement than point 3) of the previous Lemma can be found
in [13, Theorem 1.4 (i), (ii)].
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Proof. (Corollary 1.2)
Suppose, by contradiction, that the projective image of A is a minimal coun-

terexample to the conjecture. We show that every Carter subgroup H of A is
conjugate to a subgroup of A∩M, where M is the generalized monomial sub-
group, and this will easily lead to a contradiction. For a fixed H, we may choose
our notation so that H GLn(q) = 〈ψ〉GLn(q) for an appropriate power ψ of ϕ ,
as in Theorem 1.1, and set r =

∣∣CFq(ψ)
∣∣. Now let p be a prime which divides

|H ∩GLn(q)|. As H∩GLn(q) is normal in H, there exists z ∈ Z(H)∩GLn(q) of
order p. If p = r0, we have that z is conjugate to z−1 under A by point 3) of the
previous Lemma. But, as explained in the Introduction, the projective image of
z cannot be conjugate to its inverse [12, Lemma 3.1 (b)]. This forces z = z−1.
Hence r0 = 2, which contradicts the assumption q ≡ 1 (mod 4). Thus p 6= r0.
In the notation of (8), we have z = zh where h ∈ H is such that hψ−1 ∈ GLn(q).
Therefore, z is conjugate to zψ under GLn(q). This gives that the Jordan canoni-
cal form J of z is conjugate to the Jordan canonical form Jψ of zψ under GLn(F),
where F denotes the algebraic closure of Fq. But Jψ = Jr gives that z and zr are
conjugate under GLn(q) [9, Corollary 2, page 397]. We conclude that z is conju-
gate to zr under A, by point 1) of the previous Lemma. In particular, if z is scalar,
we have z = zr whence r ≡ 1 (mod p). So assume that z is non-scalar. Again
by [12, Lemma 3.1 (b)] the projective images of z and zr must be the same, i.e.
zr = ρz for some ρ ∈ F∗q. This gives that zr−1 is scalar and we conclude that
r ≡ 1 (mod p), otherwise z would belong to 〈zr−1〉. By Theorem 1.1, there ex-
ists g ∈ GLn(q) such that Hg ≤M = 〈ϕ〉Diagn(F∗q)Sym(n). For an appropriate
d ∈ Diagn(F∗q) we have that a = gd ∈ SLn(q) ≤ A. Thus H is conjugate, under
A, to a subgroup of A∩M. To reach the desired contradiction note that, by the
assumption SLn(q)≤ A:

A∩M
A∩
(
〈ϕ〉Diagn(F∗q)

) ∼ Sym(n).

The Carter subgroups of Sym(n) are its Sylow 2-subgroups, by [5]. Thus, by
Lemma 4.1, all Carter subgroups of A∩M are conjugate. We conclude that all
Carter subgroups of A are conjugate, a contradiction.

Proof. of Theorem 1.3.
HD/D is a Carter subgroup of M0/D = 〈ψ〉×Sym(n). Thus, by [5], HD/D

coincides with 〈ψ〉Σ2, where Σ2 is a Sylow 2-subgroup of Sym(n). It follows
that H is a Carter subgroup of

HD = 〈ψ〉Σ2D = (〈ψ〉Σ2D2) D2′ .
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If d ∈ D, we have dψ = dr. This means that ψ normalizes every subgroup of
D. In particular 〈ψ〉2′ stabilizes any composition series of D2, inducing the
identity on each composition factor. It follows that 〈ψ〉2′ centralizes D2 [6,
Theorem 3.2, page 178]. Thus 〈ψ〉Σ2D2 is a nilpotent group. Note that D2′ is
characteristic in D, hence normal in HD. Again HD2′/D2′ is a Carter subgroup
of HD/D2′ = 〈ψ〉Σ2D2. It follows that HD2′ = HD. As HD contains a Sylow
2-subgroup of M0, the same is true for H.
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