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THE CRF-METHOD FOR
SEMICONDUCTORS’ INTRAVALLEY
COLLISION KERNELS: I - the 2D case

CLAUDIO BARONE - SANTO MOTTA

If the collisions are redefined as a flux a kinetic conservation law
can be written in divergence form. This can be handled numerically, in the
framework of Finite Particle Approximation, using the CRF-method. In the
present paper the relevant quantities needed for computer implementation of
the CRF-method are derived in the case of a 2D momentum space for the
semiconductors’ intravalley collision kernels.

1. Introduction.

Semiconductors’ kinetic transport equation has been usually treated nume-
rically using the Monte Carlo methods [4] [5]. For a few years Deterministic
Particles Methods have been proposed as an alternative scheme for this class of
problems [2][3] [8] [10] [11][13]. In this framework the CRF-method for kinetic
equations has been recently presented [1] [12]. The idea of this method is to write
a conservation law in divergence form. This can be done easily by introducing a
flux equivalent to the inhomogeneity. In a classical frame, the reciprocal of the
desired function multiplied by the flux gives a velocity field. However, in the
finite point approximation a reciprocal does not exist. Since the velocity field
can also be interpreted as the Radon-Nikodym derivative of the flux, we use the
latter for a numerical approximation. This gives a scheme where the numerical
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effort depends only on the desired accuracy and not directly on the dimension
of the phase space. In the present paper we apply the method to intravalley
collision kemels for semiconductors in a 2D momentum space. The scattering
rate in semiconductors depends on the energy of the carriers. In the parabolic
approximation, the collision integral is spherically symmetric (spherical energy-
wavevector relationship). The ellipsoidal case can be reduced to the spherical
one using the Herring-Vogt transformation [5]. For this purpose it is useful to
use the method recast in spherical coordinates. In [1] the method was recast in
general coordinates and it was shown that the method can be used efficiently for
numerical computation of the semiconductor kemels. Examples involving more
than one kernel will need the analytical computation of the relevant quantities for
each kemel. Semiconductors’ intravalley kernels show similarities that one can
use in order to optimize the analytical work and to reduce the implementation
effort. Keeping in mind these similarities, all kernels may be derived from three
model kernels. In this paper we present a derivation of the relevant quantities for
the CRF-method for these model kemels. The plan of the paper is the following:
in §2 we recall the CRF-method; in §3 we analyze the intravalley collision kemels
for semiconductors and we identify the relevant model kemels; in §4 we com-
pute analytically the relevant quantities needed for computer implementation of
the CRF-method using polar coordinates. Finally, we make some concluding
remarks. |

2. Description of the CRF-method.

The CRF-method has been widely described in [1] [12]. In the interest
of clarity the derivation of the method is presented once again in the following.
Kinetic equations usually splitin the transport and the collision part. The transport
part can be written easily in divergence form,

0 . . ,
Agift'rans = "dzvspace(fv) - dzvmomentum(fk)

In the CRF-method one wants to write the collision part also in this form. For
this purpose one considers the equation

(1) ' ‘ : fe=Q(f)
where () = Q X Qg,C R*xR? 2= (z,6)eQ, f:[0,00) x 2 — R and

| Q(f)dé=0.
Q¢
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The initial condition f; : 2 — R should be a given non-negative function with

dz=1.
@) /Q folz) dz
Let 1 be a vector field such that
(3) divey = —Q(f)
(4) P(t,z,€)=0  forf e dN;

This means the collision Q( f) is expressed as a flux 1) and there is no flux across
the boundary of €2, which guarantees that the conservation property is satisfied.
The associated velocity field g is given according to

(5) /Bgfdgszwg

for all Borel sets B C (2. Then the equation_(l) .beéomes
(6) ft + dive(fg) = 0.
The full kinetic equation then reads
fe+ divy(fv) + dive(f(K + g)) = 0
and the equation of motion is given by
t=(v,K+g)7.

Since the components of g are added to the given vector field, the only need is
the computation of g itself. For this purpose one introduces the set

(7) Lo = {6€Q 10 <& < i}

for: =1,2,3 énd considers the integrals of the relation (5) over this set. For the
r.h.s. one finds

([ auag)ae

o

(8) ‘I’i('n)=/ W‘(t,m,f)dg:_/'

I['O‘i"h'] I[‘a.',‘/a]
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The numerical calculation of the left integral in (5) can be performed, as shown
in [12], by

L 9= z;wjxw”&’r“](éj)g;- +R
[o74] J=

where R indicates the remainder. In [12] the Simpson rule has been choosen,
where k£ = 2. This leads to a linear system of order N

(9) Agi = T

where A is a diagonal dominant matrix independent of f.
Moreover in the numerical process the distribution function f w1ll be approxi-
mated by a discrete measure [12]

N
Z - %(1)
The extension of the method to general coordinates can be obtained by

coordinate transformations [1]. Let 7' be a regular coordinate transformation,
{€} — {n} and |T| denotes its Jacobian. Then

(10) QM) =QUfT)|TI).
Since T is time independent one gets
(11) OifoT=0i(foT)=Q((foT)[T])o

But f o T' must be > multiplied by |T’| to be a density function. Letting f
(f o T)|T| and Q(f) = (Q((f o T)|T|) o T) |T| one finds

(12) 8:f = Q(f).

Suppose in the choosen coordinate system (2,, can be represented as a Cartesian
product of three intervals

0, = (a1, 1] X [ag, B2] X [as, B3]
and one chooses the set

(13) I[ia,-,'y,-] ={neQ,a; <m < ¥:)
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for ¢ = 1,2, 3. Then instead of (8) one gets [1]

a9 V= [ weama=-[ ([ aF )
Y8

[oiavy) [oeysy

and

(15) /1 g'fdn=Ti(y;).

3. Semiconductors’ Intravalley Model Kernels.

In the semiclassical approach the collision term for semiconductors can be
expressed as the difference between the electrons scattered in and out of the state

k
(16) CQ(f)::/Q(S(kﬁk)f(kﬁ(l-f(k))—-S(k,kaTk)(l—-f(kU))dk'

where S(k, k') represents the probability per unit time of an electron transition
from a state £ into an empty state k', induced by the lattice imperfections. The
(1 — f) coefficients accounts for the Pauli exclusion principle. In many cases
these factors do not contribute since it is always assumed f<<1[5]

The transition probability S(k, k') from the initial state k to the final state &',
having energies € and ¢', due to a given interaction mechanism, is given [5] [14]

Vo
(2m)3

where Vp is the volume of the crystal, G(&', k) is the overlap integral and
|V(k — k")|? is the square of the matrix element of the interaction mechanism. .
For electrons intravalley transition process G is equal to unity [5].

We note here that most of the relevant intravalley interaction mechanism can be
described - by suitably changing the meaning and the values of the constants -
through model kemels. We list here three examples of the model kemnels.

Sk, k) = %V(k — KRGk, K)8( — €

a) The optical non polar interaction. Kemel is given by:

hD3 (NO +1

!
S72pohi \ Ny )5(6 € X hw,)

S(k, k') =
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where hw, is the constant energy of the optical non polar phonon; Dy is the
optical deformation potential and pq is the density of the material.
b) The optical polar interaction. Kemel is given by:

2
,_qhwp _L_i 1 N0+1 '
S(k,k)_smeo(eoo 67”)_-_——”]‘7”"]‘7,”2( . Jo(e' = e & huwy)

where 7w, is the constant energy of the optical polar phonon; ¢ is the vacuum
permittivity; €, is the low frequency relative permittivity and ¢, is the high
frequency relative permittivity.

¢) The interaction with ionized impurity. Kemel is given by:

q4N[Z% 1
Amih(eoer ) ([|k — k'[[* + 52)?

S(k, k" = 6(¢' —€)

where N; is the impurity density; Z; is the number of charge units of the
impurity; 871 is the screening length.

All the other relevant kernels have similar forms [3] [5]. Seeking to produce
anumerical code one would like to emphasize similarities and differences among
the various kemels to optimize the writing of the code, i.e. minimizing the
necessary subroutines. The above examples show that, by suitably changing
the meaning and the numerical values of the parameters, all the previous kerriels
can be described by using the following three types of model kemels

(17) S(k, k') = AS(K — k? + o)
"N _ A '
(18) $(h k) = e A6~ 4 )
no__ A 7 1.2
(19) (0 k) = gy 0K - ).

Here we have used the parabolic approximation € = hk?/2m*. The constant ¢
is obviously suitably defined.
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4. The U’ evaluation.

As shown in section 2 the solution of the equation of motion reduces to
the computation of the velocity field g. We are then involved in computing
the rh.s of (15), i.e. the U*. Here we want to use polar coordinates. For this
purpose let (§1, £2), (K1, k2 ) respectively the Cartesian and the polar coordinates,
Qr = [a1,P1] X [0,27], and denote by T' the coordinate transformation from
{€} — {k} and by |T'| = k; its Jacobian. The collision term for semiconductors
can be expressed as the difference between a gain term- G and a lost term L.
Then in the new coordinate system we have

Q(f(ky, k2)) = Gky, k2) — L(k1, ks)

where G and L are given by

(20) Glki, k2) = /Q $ (s iz, b, o) Flgan, )y dips
(21) Z(kl,kz) = f(kl,kZ)é(kl,kZ)
with
(22) 5(k1,k2)=/ S(k1, kg, pa, p2)pa dp
Q, |

where p = (1, p2). Then (14) can be written in the form
(23) V(7)) = —5(7) + Pi (1)

To evaluate the ¥*(«;) for i = 1,2 we can proceed as follows:
1. We approximate the density function f( t, k) by a discrete measure

Ft, k1, ky) = f(t, k1, ks) 7| = Zé‘(kl k1) 6(ks — ko))

2. Compute é(k) and L(k);
3. Compute ¥'(~;) and ¥2(y;) separately for G(k) and L(k).
In performing the above analytical calculations one should be aware of
the proper treatment of the ” é-function ” [6] [7] [9]. Then, after some algebra,
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variable transformations and appropriate use of the Heaviside function (-) one
gets the following results.

1. Model kernel (17)

(24) Glhs, k) = 5 3 8k, ka ko)
(25) Clk, ko) = TAH[(K} = ¢ — a2)(8% — K} + ¢)]

Using the above results in the definition of ¥¥(;) for the first component we get

N
(26) W)= T2 (- V@) Hl(a; - o) - a)
j=1

N
TA
(27) \P (’)’1 = ‘j_v“ z kl J C(kl N3 k2 ])H(vl kl,j)

where a; = kf ; — .
For the second component we get

2

2 Avj al 2 2
(28) V5(r2) = 7 ) Hl(aj — a1)(B; — ;)]
J=1

(29) (72 —k2,5) C(kl ke i) H(v2 ~ ka2 5)

an.

One can perform, at least for the ¥! term, an easy check of the previous
formulae using the elastic limit. In this limit the energy is conserved so the radial
component of the momentum should not change, i.e. the ' should be identically
zero for all particles. As the matrix A is not singular, this implies that the ¥! on
the r.h.s. are identically zero. In the elastic limit ¢ = 0 50 a; = k; ;- Then after
some algebra, using the definition of the Heaviside functlon we get

: N
TA
vk (’71)-‘1’ (71) _—N E — k1,;)H (71 = k1,5)



THE CRF-METHOD FOR. .. 171

as required.

2. Model kernel (18)

N
(30) Gk, ky) = Z (jy k1, k2)
(31)  Clkiika) = SF(k kAR — o - a2)(8] - & + )]

where

o dk}
(32)  F(ki,ke) = ; ; T ‘
0o 2ki — ¢ — 2ki(ki — @)% cos(ky — kb)

Using the above results in the definition of () for the first component we get

N
(33) v m-%}j VEF (a5, k) (e~ )2 - a;)]
(34) () = NZ(‘h k1,5)C (1,5, ko, g) H (11 — K 5)
=1
where-
35)  RkE)= [ ks

o K3+ kP — 2k k] cos(ka; — ko)

For the second component we get

Y2

N
(36) Vi) = 5 > Hl(as - )8 =) [ Fulln, by dh
=1 o

2

N
(37) Vi(y,) = Z Y2 = k3,5)C k1,5, k2 ) H (72 = ko ;)
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where

k2 dk,
o Kk2,+a;— 2k ;. /a;cos(ks; — k)

(38) Fy(ka, kj) =

We note that the integral functions defined by equations (32) (35) and (38)
can be computed analytically (see appendix A), while the rh.s. integral in (36)
must be computed numerically.
Furthermore we note that in the elastic limit we get UL (71) = \I!%('yl) as

required.

3. Model kernel (19)

N .
' . ~ 1 ~
(39) Gk, ky) = —]VZS(kj,kl,h)
i=1
| ~ \ A 2 2 2 2
(40) Clk1, k) = 5 Fky, ko) H{(ky = 0)(By = ki)]
where
| 2 dk}
(41) ki kz) = /0 [2k% + 32 — 2k2 cos(ky — KL)JZ

Using the above results in the definition of ¥ (-y;) for the first component we get

N
' A
(42) ‘I’é'(’h) =N Z (71 = k1,5)F1(ky gy k) H (71 — k1 j)

N
1 y ~
(43) ()= v Y (11 = k1 5)Clky j, ko ) H(m — by )

Cog=1
where

dk;

2
44 ki, k;) = '
(44)  Fi(ky,k;) /0 (k3 .+ K + 5% = 2ky k) cos(ky ; — by )]
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For the second component we get

(45) §(1) = 5% Z/ Fy(ka, k) dk,
e ~
(46)  E(m)= %D (12~ k2 )C(kn g ko ) H (12 = ha )
j=1 |
where

k2 dké
(47) Fy(ka, kj) = _/0 (23 ; + % — 2Kk} j cos(ha,j — k3)I*

We note that the integral functions defined by equations (41) (44) and (47)
can be computed analytically (see appendix A), while the r.h.s. integral in (45)

must be computed numericaily.
This model kemel is already elastic. This property is conserved by the CRF-

method as can be seen, with simple algebra, from (42) and (43).

5. Conclusions.

The numerical experiments performed using the CRF-method, performed
for a 2D model using the Polar Optical Scattering collision kemel, show that
the method can be used for numerical computations [1]. For this we have
computed the relevant quantities for the application of the method to intravalley
model kemels in a 2D momentum space. The formulation of the CRF-method
in spherical coordinates is particularly suitable in the parabolic approximation.
In a subsequent paper we will present the analytical computations, for the same
model kernels, in a 3D momentum space.
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Appendix A.

In this appendix we recall the results of two well known generalized integrals
which we have used in the previous calculations.

We consider first the rh.s. integrals in (32) (35) and (38). These can be
written in the form S

dz
I(x):/a,—bcosx

where a, b are two real constants with a? > b2 and a # b.
The primitive () of (a — bcosz)~! can be computed analytically and we get

2
tan —

L arct (____
P 52 arctan ,_____a2 mys) 2

We note that if 7 € [a, 3] we have

I(s) = a+b x)

a—bcosz

s . dJE _ +
———— =I(r7) - I{a)+ I(B) - I(rT).
We now consider the rh.s. integrals in (41) (44) and (47). These can be

written in the form p :
T
I(e) = / (a —bcosz)?

where a, b are two real constants with a® > b2 and a # b.
Again the primitive can be computed analytically and we get

2 1 t t
= ——— | —_— t _ —_
I(2) a? - b2v[26 arctan ° + 2(t% + 62)]
N/
where ¢ = tan — and ¢ = —a——b—.
2 a+b

Also in this case if 7 € [a, 3] we have

[ ) - @) 4 ()~ I
| o (a—=bcosz)? g “ '
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