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W2 ?-REGULARITY FOR A CLASS
OF ELLIPTIC SECOND ORDER EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS

CARMELA VITANZA

We prove a well-posedness result in the class W2? N W, ? for the
Dirichlet problem (x) below. We assume L to be an elliptic second order
operator with discontinuous coefficients and lower order terms. The paper
extends a recent result (see [1], [2]) for operators restricted to leading terms.

Introduction.

In this paper we consider an elliptic second order operator with discon:
tinuous coefficients and lower order terms proving the well-posedness of the
Dirichlet problem

{LuszLp

1 .

(%)

The result was previously known under the assumption that the leading terms’

coefficients ;; are in the space C°(2) and that the lower order terms have
coefficients b;, c belongingto suitable L? spaces (see [3], [S], [6], [7]). Recently
F Chlarenza, M. Frasca and P. Longo in the papers. [1] [2] were able to give LP
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estimates and to establish the well-posedness of (+) when Lu is an elliptic second
order operator without lower order terms and the coefficients a;; are assumed to
be in VMO. VMO is the subspace of JOHN-NIRENBERG'’s space BMO whose
elements have norm on the balls vanishing as the radius of the ball approaches
zero (see Sec.1 for precise definitions).

Our purpose here is to extend their work in order to allow operators with
lower order terms. Our proof is very different from the one given by M. Chicco
in his paper [3] in the case of continuous coefficients where a very careful
spectral analysis is performed by pointwise perturbing a smooth coefficients
operator. This seems to be impossible in this case because the discontinuity of
the coefficients. What we do is obtain a-priori estimates, using in part the work
[2] and then we obtain the result by a standard approximation argument.

1. Some functional spaces.

We start this section by recalling the definitions of the spaces BMO and
VMO. _
We say that a locally integrable function f in R™ is in the space BMO if

supf |f(2) = foldz = [l < +o0
B JB - -

where B ranges in the class of the balls in R™. Here fp is the average of f over

B: {5 f(z) dx.
~ For f€ BMO and r > 0 we set

(1.1) supf £() - falde = n(r)

where B ranges in the class of the balls with radius p.
We say that a function f € BMO is in the space VMO (see [8]) if
hm n(r) = 0. We will refer to 7(r) as the VMO modulus of f.

We will need for further developments the following known property of the
space VMO (see e.g. [8], [4]). ~ .

Theorem 1.1. For f € BMO the followmg conditions are equzvalent

(1) fisin VMO

(2) f is.in the BMO closure of the set of the uniformly continuous functlons
which belong to BMO;, )
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) liy || f(z = ) = £(&) [l =

By this theorem and a known result (see [4]) we have that if f € VMO,
the usual mollifiers converge to f in the BMO norm. In other werds, given any
f € VMO with VMO modulus 7(r), it is possible to find a sequence of C'*®
functions { f,} converging to f in BMO as A — ( and with their VMO moduli

m(r) < n(r)-
Moreover, for f € LP({2), we set

o i o0

|E|<Le

Clearly w(o) is a decreasing function in ]0, |©2|] such that lin}) w(o) = 0. We
will refer to w( o) as the AC modulus of | f|?.

2. Notations, assumptions and main result.

In Q, a bounded open set of R™ (n > 3), we cbnsider the cl_.liptic\equation
in nondivergence form
Lu = Z a”(x)uz £ + Z b; (:L')uxl +cu=f
1,7=1 Coi=1

and the associated Dirichlet problem

{Lu:f inQ»

(2.1) weW2P(Q) N WEP(Q), fe LP(Q) withpe]l,+oof.

On the coefficients of L we make the following assumptions

[ aij(z) € VMON L*(R™) L,i=1...,n

aij = Qj; i,j:l,...,n a.c.in
(22)  93x>o0: | '
/\-llfl2 < Z aijf,fj < )\|§|2 a.e.in ) VfE R™

. 1,5=1

(2.3) {bieLt(Q) i=1,...,n wheret=nforl< p<n,

t>nforp=n,t=pforp > n.

(}) If E C R™ is Lebesgue measurable we set | E| for its Lebesgue measure.
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(2.4) c€ L*(Q) wheres=§f2r1<p<g,.s>-’21forp= s
s=pforp> %, c¢<0aein

Our purpose is to prove an existence and uniqueness result for problem
(2.1). :
First we want to prove the following theorem

Theorem 2.1. Let 0 € C'! and assume (2.2), (2.3) and (2.4). Let q, p €
11, +00[, ¢ < p, f € LP(Q). Then there exists a positive number ro depending

onmn, A, p,the VMO moduli of a;; and the AC moduli of |b|* = (> b;?)t/z and
i=1

of |c|® such that for r € 10, o], B, a ball with radius v, and for any u solution
of the problem

{Lu =f aeinQ =QnB, %0
ue W9(Q,) N Wy (Q,)

we have u € W2P(Q,) N W, P(Q,.).
Furthermore there exists a positive constant Cyy such that

(2.5) | ¥ziz; Lo,y < Coll fllLee,)  Vii=1,...,n.

Here Cy depends on n, p, 00, A, the VMO moduli ofa;j(t,j=1,...,n)
Proof. We start by observing that for the Dirichlet problem

o~ n n
Lu= ) @i (%)Uziz; = f— 3 biug, —cu ae.inQ,
(2.6) i,j;l i=1

u€ WH(Q, )N W, UQ,), feLi(Q,),

F. Chiarenza, M. Frasca and P. Longo in [2] have proved the inequality

n
ltoes; llzacany < Ca|f - Z el o

By Sobolev’s lemma it follows

2.7 llullwz»a(n,)nwg"’(n,) < Cillfllzeca,) +

+CIS(”|b| LY(S,) + ”C”L_’(Qr)> ”u”Wz’q(Qr)nWOl’q(Q,)
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where S is the Sobolev’s constant.

Fix ro > 0 so small that
1
H Ibl “Lt(Qro)‘ + “c”LS(Qro) < m .

Then from (2.7) we obtain for any r € ]0, o] |
(2.8) lullwa.a(a,nwrea,) < CollfllLea,) -
Define, for r < rg
T:W>(Q,) - LYQ,)
for any ¢ < p by setting

Tv = f - zn:l_)ivx‘. —cv
=1

We now consider the Dirichlet problem

Lu =Tu
w€ WHI(Q,) N Wy '(Q,),
with v given in W2:4(,.).
For this problem the existence of a unique solution u is known by theorems 4.3
and 4.4 in [2].
Then we can define
Fo: W2(Q,) nW5(Q,) — wi(Q,)n Wy q(Q,.)
by setting Fo =u.
The operator F’ is a contraction in Wz’q( Q) NW, Q) for any g < p. Indeed
let
F(vy) = uy , F(vs) = uy , forvy, v, € W? ’q(Q ) W, (Q,) .
Using (2.7) we have ‘

| F(v1) - F(DZ)HWZQ(Q,)nWOL"(Q,) = [lur - u2”wz,q(9,)nwg»4(9,) <

<GS (I“bl“L‘(Q,

Then F has an unique fixed point in all the W2:9(Q,.) n W14(Q,.) spaces with
q <p. |
Let z be the fixed pomtm W2P(Q,) N W, P(R,) C W“(Q ) N Wy 9(R,).
By this inclusion z is also a fixed pointin W27(Q,.) N Wq 9(Q,) forany ¢ < p;
because by assumption v is a fixed point in W2:9(Q,. )W}, '%(€2,.) the uniqueness
of the fixed point implies z = u. O

We now obtain the same result in 2. More precisely, we show the following
theorem

r > oy = v2”W2-q(Q,)nW01"’(Qr) :
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Theorem 2.2. Let 0 € C'' and assume (2.2), (2.3), (24). Let q, p €
11,400, ¢ < p, f€ LP(N). Then for any u solution of the problem

Lu=f a.e.inf
{ u € WHI(Q) N Wy (Q)
we have u € W2P(Q) N W) P(Q).
Furthermore it exists a positive constant Cy such that
(2.9) lullwer@ynwre@y < C3 (I1fllLrie) + lullr(e)) -

Here C'5 depends on n, p, 8Q, A, on the VMO moduli of a; i, 1,5 =1,.
on the L' and L® norm respectively of b;, i = 1,...,n and ¢ and thezr AC
moduli.

Proof. We consider a covering of 2 by N balls B,.k yk=1,...,N,r,€]0,70]

(where 7y is the same of the previous theorem).
We conS1dcr a partition of the unity o, associated with this covering of 2. Then

U= E aruin(, w1thaku€W2’q(Q )NWy9(9,, ), where: Q,, = QﬂBrk
k=1
We have

(2.10) Laxu) =

= aiplu+ u(L(ak) - cak) + 2 Z a,-j(ak)x‘.uxj a.c. in B, .
) t,j=1
By assumption Lu € LP({2,,) and by Sobolev’s lemma the terms on the right
hand side of (2.10) belong to L7(Q,.,) with 7 > g¢. Then, by theorem 2.1, we
have that the solutions of (2 10) belong W27 (Q,., ) N Wa'" (2, ).

If T = p, recalling u = Z axu, we have u € W2P(Q) N W, (Q).
k=1
If 7 < p the same result is obtained iterating this procedure a ﬁmte number of

times.
Finally the estimate (2.9) is obtained by using (2.5). More precisely we have

(2.11) llexullwes i, yawpr(a,,) < CollL(axw)llLa(s,,)
k=1,...,N and by (2.10) |

(2.12) lekllwesa,, w2 oo <Co{|lakLU|le(n, ) T

+ “ i aij(0k)z,,

1,j=1

42 Y aian)orn,

1,7=1

"k)

SR DaLICAR

g} = Colh + b8}

s,
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The conclusion will follow majorizing I; ,——, I.
Let us confine ourselves, for simplicity, to the case 1 < p < n/2, the other cases

being similar.
We have:
(2.13) 5L < I}zlatxlﬂlkl I fllsa,,) s
Tk
(2.14) I, < n®*Amax max' ok)ziz; | ullLra,. ) -
,J Q J Tk

The integrals I3 and I are estimated using Sobolev’s lemma and the Nirenberg—
Gagliardo’s estimate.
We have forany e, > 0,k =1,...,N

(2.15) I3 < § max IgaXI(ak)x.l 2; bill L= a.,) Itz llLe(a,,) <

< Smax rgax (k)] Z [|b: ||L"(9rk)

=1

| 2 erllnes v, + elenllullzaa, )

t,J

<

rk)""

(2.16) I < 20X max max (ax)z, 2; [

< 2nA max max (k) z| (Z eklltziz; lLr(a,, ) + C(f:k)”’ll/”[,p(ﬂrk)) .

* i\
Finally observing that
N
HU’HWQ,P(Q)OWOLP(Q) S Z ”akuHWQ’P(Q)ﬁWOI”’(Q)

k=1

and using (2.13),——,(2.16) from (2.12) we _obtain the estimate (2.9). O
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Theorem 2.3. (Uniqueness) Let 9Q € CU1. Assume (2.2); i) b; € LY(Q) with
t>nforl <p<mn,t=pforp> nandu)ceLs(Q)wzths = n for
l<p<n,s=pforp>n,c<0ae.in. o
Then the solution of the Dirichlet problem

{ Lu=0 a.e.in(}

ue Whr(Q) N We ()

is0in Q.

Proof. The function 0 belongs to L™(Q). By theorem 2.2 it follows that

u € WH™(Q) N C°%N); hence, recalling the Pucci-Alexandroff maximum
principle, the thesis follows. O

Theorem 2.4. (Existence) Let Q2 € C11. Assume (2.2), i) b; € L{(Q) with
t>nforl <p<n,t=pforp > n and ii) c € L°(Q) with s = n for
1<p<n,s=pforp>n,c<0a.e. inQ. Then the Dirichlet problem (2.1)
has a (unique) solution u. Furthermore it exists a positive constant Cy such that

(2-17) ' “unw'-’.p(g)nwolm(n) < C4”f”LP(Q) .

Here the constant Cy depends on-n, p, Q, X\, on the VMO moduli of aij,
t,J=1,...,n,0onthe L' and L*° norms respectively of b;,i = 1,...,n, and c
and their AC moduli.

Proof. First we prove the (2.17). Then the ex1stence result will follow by a
standard approximation argument.

We prove now estimate (2.17) by contradiction.

If (2.17) is not true, there exists a sequence of operators

{L(k) = Z a(k)(a:)a TS +Z (k)(:r c(k)}

1,7=1

verifying assumptions (2.2), i) and ii) with the VMO moduli and the LZ° norms
of a(k) k € N, uniformly bounded and the L and L* norms respectively of b( )

and c(k) k € N, and their AC moduli umfonnly bounded, and a sequence of
functions {u(® }, u(k) € W2P(Q) N WLP(Q) satisfying

Hu(k)“Wz,p(Q) =1, _1im “L(k)u(k)”LP(Q) =0.

We start by observing that it is possible to find subsequences of { a(k) }, {b(k) '
{c®)}, which we relabel as {a{¥}, (b "} and {c®}, such that {a{¥}
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converges a.c. in R™ to a function «;; verifying assumptions (2.2) (see theorem
4.4 of [2)), {bgk)}, and {c(¥)} weakly converging to §; € L*(Q) and to
v € L*(Q2) with t and s verifying assumptions i) and ii).

Now we set

n

o o Y
JACI - Z aij(z)(?z-axj + Zﬂz(l‘)a—
¢ =1

1,7=1

There exists a subsequence of {u(¥)}, weakly converging to a function u(®) ¢
W2P(Q) N Wy'P() and then {[|u®]| 15y} converges to 1w | Lo(q)-
Suppose, for simplicity 1 < p < n. Since for ( € L7 (Q), p' = p/(p— 1), we
have

/ l (Lmu(k) _ L(a)u(a)) C’ dz <
Q

< —/Q l En: (ug’f;) ugfaa)’f) a”C, dz + Z ” SL‘k?’vj “L"(Q) }
1,j=1 4,j=1
3 (G

+ Z ”b(k) ﬂ‘t“Lt(Q)”C”LP () ”u(k) - u(a)“Lq(Q) +

iy I =0 U3l

u(a)g‘ b(k) ,B,)l dz + “C(k) - 7HLn(Q) ”C”LP’(Q) )

T O g 40l
n ‘ (k) _ (a)
/Q (c 7) u™¢

where 1 < ¢ < np/(n—p), ¢ = q¢/(¢—1),1 <t < np/(n — 2p) and
t' = t/(t—1), wehavethat { L(¥ )u )} converges weakly in LP(Q) to L() (),
Hence L(®u(®) = 0 a.e. in Q and by theorem 2.3 u(®) = 0.

Thus (¥, o, converges to zero, which, on account of (2.9), contradicts

=1. 0O

dx

1w 2.r ()
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