ISOMETRIES IN GALOIS SPACES

WALTER BENZ

- 1. We determine the group of isometries of certain spherical spaces which are embedded in Galois Spaces. Concerning other results of similar type see [2], [3], [4], [5], [6].
- **2.** Suppose that M and W are sets with $M \neq \emptyset$ and that d is a mapping from $M \times M$ into W. Then (M, W, d) is called a distance space and d(x, y) the distance of x, y. We say that $f: M \to M$ is an isometry in case

$$d\left(x,y\right)=d\left(f\left(x\right),f\left(y\right)\right)$$

holds true for all $x, y \in M$. An isometry needs not to be injective ([1]). However, the set of all bijective isometries of (M, W, d) is a group (under the permutation product) which we denote by I(M, W, d). For every group G there exists a distance space (M, W, d) such that

$$G \cong I\left(M,W,d\right)$$

([1]).

3. Suppose that F is a Galois field GF(q) with $2 \nmid q$. Let $n \geq 2$ be an integer and let $G = (g_{ij})$ be a symmetric $(n+1) \times (n+1)$ -matrix over F such that det $G \neq 0$. By

$$(1) \sum (F, n+1, G)$$

we denote the distance space

$$(F^{n+1}, F, d_G)$$

such that

(2)
$$d_G(x,y) := (x-y)^2$$

with the scalar product

(3)
$$vw := \sum_{i,j=1}^{n+1} g_{ij} v_i w_j$$

for $v, w \in F^{n+1}$. Every isometry f of (1) must be bijective and of form

$$f(x) = x\Pi + a$$

for all $x \in F^{n+1}$ with matrices

$$\Pi = \begin{pmatrix} a_{11} & \dots & a_{1,n+1} \\ \vdots & & & \\ a_{n+1,1} & \dots & a_{n+1,n+1} \end{pmatrix}$$

and

$$a = (a_1 \dots a_{n+1})$$

over F such that

$$\Pi G \Pi^T = G.$$

A consequence of (4) is

$$det \ \Pi \in \{1,-1\}.$$

4. Suppose that

$$\varepsilon_1, \ldots, \varepsilon_n, \varepsilon_{n+1}$$

are elements of F = GF(q) such that

$$\varepsilon_1 = 1$$
 and $\varepsilon_i^2 = 1$

for i = 2, ..., n + 1. The set of points of the n-dimensional spherical geometry of signature $\varepsilon_1, \ldots, \varepsilon_{n+1}$ is then defined by

(5)
$$S_{\varepsilon_1,\dots,\varepsilon_{n+1}}(F) := \{ x \in F^n \mid x^2 = 1 \}$$

with the scalar product

(6)
$$vw = \sum_{i=1}^{n+1} \varepsilon_i v_i w_i$$

of F^{n+1} . Let \sum be the (n+1)-dimensional affine space over F and let $\sum^{\nu+1}$ be a $(\nu+1)$ -dimensional affine subspace of \sum passing through the origin. Then

$$\sum^{\nu+1} \cap S_{\varepsilon_1,\dots,\varepsilon_{n+1}}(F)$$

is called a ν -dimensional subspace of the spherical space $S_{\varepsilon_1,\ldots,\varepsilon_{n+1}}(F)$. Fundamental will be now the distance space

(7)
$$(S_{\varepsilon_1,\ldots,\varepsilon_{n+1}}(F), F, d(x,y) = xy)$$

in the following three cases

- A) $\varepsilon_1 = \ldots = \varepsilon_{n+1}$ (Möbius case),
- B) $\varepsilon_1 = \ldots = \varepsilon_n = -\varepsilon_{n+1}$ (Minkowski case), C) n+1 even and $\varepsilon_1 = \ldots = \varepsilon \frac{n+1}{2} = -\varepsilon \frac{n+3}{2} = \ldots = -\varepsilon_{n+1}$ (Plücker case).

5. We define $a(n+1) \times (n+1)$ -matrix G by

$$(8) g_{ij} = \delta_{ij} \cdot \varepsilon_i,$$

where δ_{ij} denotes the Kronecker symbol

$$\delta_{ij} = \begin{cases} 1 & i = j \\ & \text{for} \\ 0 & i \neq j \end{cases}.$$

Theorem. Let Δ be one of the distance spaces (7) in cases A, B, C. Then every isometric of Δ must be bijective. The group of isometries of Δ consists exactly of the mappings

$$(9) f(x) = x\Pi$$

for $x \in S_{\varepsilon_1...,\varepsilon_{n+1}}(F)$ with

(10)
$$\Pi G \Pi^T = G.$$

This group is the group of isometries of space (1), leaving invariant 0, restricted on $S_{\varepsilon_1...,\varepsilon_{n+1}}(F)$.

Proof. (a) Suppose that $\varphi: F^{n+1} \to F^{n+1}$ is an isometry of (1) leaving invariant 0 in case (8). Because of

$$d_G(0,x) = d_G(0,\varphi(x))$$

we have

$$(11) x^2 = [\varphi(x)]^2.$$

Hence $x^2 = 1$ implies $[\varphi(x)]^2 = 1$. The restriction

$$f = \varphi \mid S_{\varepsilon_1, \dots, \varepsilon_{n+1}}(F)$$

thus maps S into S. It is f injective since φ is bijective. Take an element

$$y \in S := S_{\varepsilon_1, \dots, \varepsilon_{n+1}}(F).$$

Since φ is bijective there exists $x \in F^{n+1}$ with $y = \varphi(x)$. Now $y^2 = 1$ implies $x^2 = 1$ according to (11) and f is hence a bijection of S. Moreover is f an isometry of (7) because of

(12)
$$2d(x,y) = d_G(0,x+y) - d_G(0,x) - d_G(0,y).$$

We namely observe that φ is linear according to section 3 and that hence (12) implies

$$d(x, y) = d(\varphi(x), \varphi(y)).$$

Let now f be an arbitrary isometry of (7).

(b) In case A we consider the n+1 points

$$E_1 = (1, 0, \dots, 0), E_2 = (0, 1, 0, \dots, 0), \dots, E_{n+1} = (0, \dots, 0, 1).$$

Observe

$$E_i \in S_{1,1,\dots,1}$$

for i = 1, ..., n + 1. Hence $A_i := f(E_i) \in S$. Now

$$A_i A_j = f(E_i) f(E_j) = E_i E_j = \delta_{ij}$$

and

$$h(x) := x_1 A_1 + \ldots + x_{n+1} A_{n+1}$$

is hence an isometry of (1) for the special G under consideration. Let p be the restriction of h on S. Then $p^{-1}f$ is an isometry of S leaving invariant E_1, \ldots, E_{n+1} . Suppose that x is a point of S and that $y := p^{-1}f(x)$. Then

$$x_i = xE_i = p^{-1}f(x) \cdot p^{-1}f(E_i) = y_i$$

for i = 1, ..., n + 1. Hence x = y and thus $p^{-1}f = id$, i.e. f = p.

(c) In case B we consider the n+1 points

$$E_1 = (1, 0, \dots, 0), \dots, E_n = (0, \dots, 0, 1, 0), E = (-1, -1, 0, \dots, 0, 1).$$

Obviously, $E, E_i \in S$. Observe

$$E_i E_j = \delta_{ij}$$

and

$$E^2 = 1$$
, $EE_1 = -1 = EE_2$, $EE_i = 0$ for $i = 3, ..., n$.

Put A := f(E) and $A_i := f(E_i)$. The A_1, \ldots, A_n are obviously linearly independent because of

$$\delta_{ij} = E_i E_j = f(E_i) f(E_j) = A_i A_j.$$

Also, A_1, \ldots, A_n, A are linearly independent. This is a consequence of

$$A^2 = 1$$
, $AA_1 = -1 = AA_2$, $AA_i = 0$ for $i = 3, ..., n$:

$$A =: \alpha_1 A_1 + \ldots + \alpha_n A_n$$

namely implies $0 = AA_i = \alpha_i$ for i = 3, ..., n and

$$A = -A_1 - A_2$$

which together with $A^2 = 1$ leads to a contradiction. Now

$$h(x) := x_1 A_1 + \ldots + x_n \cdot A_n + x_{n+1} \cdot (A + A_1 + A_2)$$

is an isometry of (1) for the present

$$G = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & -1 \end{pmatrix}.$$

Let p be the restriction of h on S. Then $p^{-1}f$ is an isometry of S leaving invariant E_1, \ldots, E_n, E . Suppose that x is a point of S and that $y := p^{-1}f(x)$. Then

$$x_i = xE_i = p^{-1}f(x) \cdot p^{-1}f(E_i) = y_i$$

for $i = 1, \ldots, n$ and

$$-x_1 - x_2 + x_{n+1} = xE = yE = -y_1 - y_2 + y_{n+1},$$

i.e. $x_{n+1} = y_{n+1}$. Hence x = y and thus $p^{-1}f = id$, i.e. f = p.

(d) In case C we consider the n+1 points

$$E_i = (\delta_{i1}, \delta_{i2}, \dots, \delta_{i,n+1}),$$

$$F_i$$

for $i=1,2,\ldots,k:=\frac{n+1}{2}$, where the first and the second component of F_i is -1 and where all the other components are 0 up the (k+1)-th component which is supposed to be equal to 1. Obviously, $E_i,F_i\in S$. Define

$$D_{i} := \begin{cases} E_{i} & i = 1, \dots, k \\ F_{i-k} + E_{1} + E_{2} & \text{for } i = k+1, \dots, 2k \end{cases}$$

Observe

$$(13) D_i D_i = \varepsilon_i \delta_{ij}$$

for $i, j \in \{1, \dots, n+1\}$. Put now

$$A_i = f(E_i)$$
 and $B_i = f(F_i)$

for i = 1, ..., k. Because of (13) and $E_i, F_i \in S$ we get

$$A_i A_j = E_i E_j = \varepsilon_i \delta_{ij},$$

$$B_i B_j = F_i F_j = \varepsilon_1 + \varepsilon_2 + \varepsilon_{k+i} \delta_{ij},$$

$$A_i B_j = E_i F_j = -\varepsilon_1 \delta_{i1} - \varepsilon_2 \delta_{i2}.$$

Put

$$H_i := \begin{cases} A_i & i = 1, \dots, k \\ B_{i-k} + A_1 + A_2 & \text{for } i = k+1, \dots, 2k \end{cases}$$

Hence

$$H_iH_j=\varepsilon_i\delta_{ij}.$$

It is now

$$h(x) := x_1 H_1 + \ldots + x_{n+1} H_{n+1}$$

an isometry of (1) for the present G. Let p be the restriction of h on S. Then $p^{-1}f$ is an isometry of S leaving invariant E_1, \ldots, F_k . Suppose that x is a point of S and that $y := p^{-1}f(x)$. Then

$$\varepsilon_i x_i = x E_i = p^{-1} f(x) \cdot p^{-1} f(E_i) = \varepsilon_i y_i$$

for $i = 1, \ldots, k$ and

$$-x_1 - \varepsilon_2 x_2 + \varepsilon_{k+i} x_{k+i} = xF_i = yF_i = -y_1 - \varepsilon_2 y_2 + \varepsilon_{k+i} y_{k+i}$$

for i = 1, ..., k. Hence x = y and thus f = p.

Remarks:

- 1. With the same arguments the Theorem can be carried over to the general case $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{n+1}$, where $\varepsilon_1 = \varepsilon_2 = 1$.
- 2. The spherical geometry of case B is the de Sitter-world over GF(q). The group of isometries is here the Lorentzgroup of $[GF(q)]^{n+1}$ of those isometries which leave invariant the origin 0.

REFERENCES

- [1] W. Benz, Geometrische Transformationnen unter besonderer Berücksichtigung der Lorentztransformationen, BI-Wissenschaftsverlag, Mannheim-Wien-Zürich, 1992.
- [2] W. Benz, *Mappings in Galois planes*, Istit. Naz. Alta Mat. Francesco Severi Symp. Math. 28 (1983), pp. 3-13.
- [3] F. Radó, Mappings of Galois planes preserving the unit Euclidian distance, Aequat. Math. 29 (1985), pp.1-6.
- [4] F. Radó, On mappings of the Galois space, Israel Journ. Math. 53 (1986), pp. 217-230.

- [5] H. Schaeffer, Der Satz von Benz-Radó, Aequat. Math. 31 (1986), pp. 300-309.
- [6] G. Tallini, On a theorem by W. Benz characterizing plane Lorentz transformations in Järnefelt's world, Journ. Geom. 17 (1981), pp. 171-173.

Mathematisches Seminar Universität Hambourg Bundesstraße 55 2000 Hambourg 13 Germany