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ISOMETRIES IN GALOIS SPACES

WALTER BENZ

1. We determine the group of isometries of certain spherical spaces which are
embedded in Galois Spaces. Concerning other results of similar type see [2], [3],

[4], [5], [6].

2. Suppose that M and W are sets with M # () and that d is a mapping from
M x M into W. Then (M, W,d) is called a distance space and d (z,y) the
distance of z,y. We say that f : M — M is an isometry in case

d(z,y) = d(f (), f (v))

holds true for all x, y € M. An isometry needs not to be injective ([1]). However,
the set of all bijective isometries of (M, W, d) is a group (under the permutation
product) which we denote by I (M, W,d). For every group G there exists a
distance space (M, W, d) such that

G = I(M,W,d)
([1D.

3. Suppose that F' is a Galois field GF(q) with 2+ q. Let n > 2 be an integer
and let G = (g;;) be a symmetric (n + 1) X (n + 1)-matrix over F’ such that

det G # 0. By
(1) Y (Fin+1,G)
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we denote the distance space

(F" Fdg)
such that
(2) do(z,y) = (z — y)*
with the scalar product
n+1
(3) vw = Z 9ij VW
i,5=1

for v, w € F™*1, Every isometry f of (1) must be bijective and of form

f(z)=zll4+a
for all z € F™*! with matrices
aii v al,n+1
II =
n+1,1 .- Qn4ln+l
and
a=(ai...an+1)
over F' such that
(4) IIGI* = G.
A consequence of (4) is
detIT € {1,-1}.
4. Suppose that
€1y -+ yEns;En+1

are elements of F' = GF(q) such that

e1=1 and e?=1
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for: = 2,...,n+ 1. The set of points of the n-dimensional spherical geometry
of signature €1, ..., €np+1 is then defined by
(5) 551,---,€n+1 (F) = {ZL‘ an l xz = 1}

with the scalar product

n+1

(6) vw = Z €,V W5
i=1

of F"t1 Let 3 be the (n + 1)-dimensional affine space over F and let 3" 11
be a (v + 1)-dimensional affine subspace of > passing through the origin. Then

v+1
Z nSel,.‘.,s,H_l (F)

is called a v-dimensional subspace of the spherical space Se,, . . e,.,(F).
Fundamental will be now the distance space

(7) (Seryenpn (F), F, d(z,y) = zy)

in the following three cases

A)e; =... =¢€ny1 (MoObius case),

B)ei;=...=¢, = —e,+1 (Minkowski case),

C)n+1levenande; =...=¢eZl = —e28 = = ¢,y (Pliicker
case).

5. We define a (n + 1) x (n + 1)-matrix G by
(8) Gij = Oij * €4y
where 0;; denotes the Kronecker symbol
1 1=
5ij = { for .
0 t5#£ g

Theorem. Let A be one of the distance spaces (7) in cases A, B, C. Then every
isometric of A must be bijective. The group of isometries of A consists exactly

of the mappings

(9) f(z) =<l
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forz €S, . e, .. (F) with
(10) nen? = G.

This group is the group of isometries of space (1), leaving invariant 0, restricted
on Se,...enss (F):

Proof. (a) Suppose that ¢ : F™*! — Ftl s an isometry of (1) leaving
invariant 0 in case (8). Because of

dg(0,z) = de (0, p(z))
we have
1) | z? = [p(z))%.
Hence 22 = 1 implies [p(z)]? = 1. The restriction
F=0]8e,. ent:(F)
thus maps S into S. It is f injective since o is bijective. Take an element
YES =8, . enis (F).
Since ¢ is bijective there exists z € F**! with y = ¢(z): Now y2 = 1 implies

2 =1 according to (11) and f is hence a bijection of S. Moreover is f an
isometry of (7) because of

(12) 2d(z,y) = dg (0,2 +y) — dg(0,z) — dg (0,7).
We namely observe that ¢ is linear according to section 3 and that hence (12)

implies
d(z,y) = d(p(z), ¢ ().

Let now f be an arbitrary isometry of (7).
(b) In case A we consider the n + 1 points

Ey = (1,0,...,0), By = (0,1,0,...,0),..., Enyy = (0,...,0,1).

Observe
E;eS811,..1
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fori=1,...,n+ 1. Hence A; := f (E;) € S. Now
AiAj = f(Ei)f (E;) = EiEj = by

and
h (:L‘) =x1A1+ ...+ Tptr1dns

is hence an isometry of (1) for the special G under consideration. Let p be
the restriction of A on S. Then p~!f is an isometry of S leaving invariant
Ei,...,E,41. Suppose that z is a point of S and that ¢ := p~1 f (). Then

zi=zE; =p 'f(x) p ' f(Ei) =wi

fori=1,...,n+ 1. Hence z =y and thus p~! f = id, i.e. f = p.
(c) In case B we consider the n + 1 points

Ey = (1,0,...,0),...,E, = (0,...,0,1,0), E = (=1,-1,0,...,0,1).
Obviously, E, E; € §. Observe
E,E; = §;;

and
F?=1 FEE,=-1=FEE,, EE;=0 for i=3,...,n.

Put A ;= f(FE) and A; := f(E;). The A,;,..., A, are obviously linearly
independent because of

6 = E:Ej = f (Ei)f (By) = AiA;.
Also, A1,...,An, A are linearly independent. This is a consequence of
A’ =1, AA; = -1=AA;, A4 =0 for i=3,...,n:
A= oA +...+ a, A,
namely implies 0 = AA; = a; fori = 3,...,n and
A=—-A, - A,

which together with A% = 1 leads to a contradiction. Now

h(CE) :=CI31A1\+...+LL‘n'An+$n+1'(A+A1+A2)
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is an isometry of (1) for the present

1 0 ... 0 O

01 ... 0 0O
G=|:

0 0 ... 1 0

0 0 0 -1

Let p be the restriction of 4 on S. Then p~! f isan isometry of S leaving invariant
Ej, ..., En, E. Suppose that z is a point of S and that y := p~}f (). Then

zi=xE; =p~'f(z) p7lf (Ei) = ys
fori=1,...,n and
—T1 =22+ ZTny1 = TF =yE = —y; — Y2 + Yn+1,

i.. Zni1 = Yny1. Hence 2 = y and thus p~1f = id, i.e. f = p.
(d) In case C we consider the n + 1 points

E; = (0i1,0i2,. .« 165 nt1),
F;

fori = 1,2,...,k := 2L where the first and the second component of F; is
—1 and where all the other components are 0 up the (k + 1)-th component which
is supposed to be equal to 1. Obviously, E;, F, € S. Define

D E; ¢ 1=1,...,k
3 = or . .
F,_ .+ FE + E, t=k+1,...,2k

Observe
(13) D;D; = €;6;;
fori,7€{1,...,n+ 1}. Put now

A; = f(E;) and B; = f (Fy)
fori=1,...,k Because of (13) and E;, F; € S we get

AiAj = EiEj = 61'(51']',
BiB; = FiF; = €1 + €3 + €405,
Az‘Bj = EzFJ = —61(51'1 - 625i2.
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Put
A; 1=1,...,k
H;, = for .
Bi—r+ A1 + Az t=k+1,...,2k
Hence
HiHj =5i5ij-
It is now

h(z):=z1Hi + ...+ Tpt1Hnp1

an isometry of (1) for the present GG. Let p be the restriction of A on S. Then
p~ ! fis anisometry of S leaving invariant E, . .., F). Suppose that z is a point

of S and that ¢ := p~ 1 f (). Then
eixi =cE; =p~ ' f () - p™ f (B) = ey
fort =1,...,k and
—T1 — €282 + Ep4iThts = TF; = YFy = —y1 — €2Y2 + EktiYk+i

fori=1,...,k. Hence x = y and thus f = p.

Remarks:
1. With the same arguments the Theorem can be carried over to the general case
€1,€2y+++3yEn+1> where €1 = €9 = 1.

2. The spherical geometry of case B is the de Sitter-world over GF(q). The
group of isometries is here the Lorentzgroup of [GF(q)]™*! of those isometries
which leave invariant the origin 0.
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