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THE q-PERFECT GRAPHS -2
CLAUDE BERGE

1. Introduction.

Let g be a positive integer. Many graphs admit a partial coloring with ¢
colors and a clique partition such that each of the cliques is strongly colored
, that is: contains the largest possible number of different colors. If a graph G
and all its induced subgraphes have this property, we say that G is g-perfect
(Lovasz). In a previous paper [4], the specific properties for the case ¢ = 2 were
investigated. Here, we study some graphs which are g-perfect for other values
of g, and more specially the balanced graphs.

2. Some characterization theorems for ¢-perfect graphs.

Let GG be a simple graph (no loops, no multiple edges); we denote by a(G)
the stability number, by 8(G) the least number of cliques which cover the vertex
set, by w(G) the maximum size of a clique, and by x(G) the chromatic number.

Let g be a positive integer. A partial q-coloring of GG is a set of g pairwise
disjoint stable sets S1,.52,...,S, each one corresponding to a color ; some of
the vertices may have no color. The largest possible number of colored vertices
in a partial g-coloring is denoted by a(G). A partial g-coloring with o, (G)
colored vertices is optimal.

Let M = (Cy,C4,...,) be apartition of the vertex set V (G) into cliques;
by definition, the g-norm of M is: ‘

By(M) =" min{| Gy, q}.
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We denote 6,(G) the minimum g-norm for the clique partitions of G. If
Bq(M) = 6,(G), we say that M is g-optimal.

For every clique partition M = (C;,Cq,...) and for every partial q-
coloring (S;,S5s,...,S,), we have

(1) |U5i|=Z|CjﬂU5ilSZmiH{ICjI,Q}=Bq(M)-
i=1 J J

Hence o, (G) < 64(G). If every subgraph G4 of G satisfies o, (G 4) = 8,(G ),
we say that G is g-perfect. Clearly a1 (G) = a(G), 0;(G) = 6(G), and a graph
G is 1-perfect if and only if G is perfect.

For a hypergraph H = (E},E,,...,E,,) on a set X of vertices, v (H)
denotes the maximum number of pairwise disjoint edges, and 7 (H) denotes the
least cardinality of a transversal set of H (set of vertices which meets all the
edges). Clearly, v (H) < 7(H), and if v (H) = 7 (H), the hypergraph H is
sdid to have the Konig property. Foraset A ¢ X, let H /A denote the partial
hypergraph of H defined by the edges contained in A; if H \ A has the Konig
property for all A, we say that H is a mengerian hypergraph; for various classes
of mengerian hypergraphs, see [3]. ;

Theorem 1. Let q be an integer > 2; let Gy be a graph without K .. Then
Go is g-perfect if and only if the two following conditions hold:

(i) every subgraph G with w (G) < q is g-colorable;
(ii) for every subgraph G, the hypergraph Gt of the (q + 1)-cliques of G
has the Konig property.

Proof. 1.LetGgbea K, ,-free g-perfect graph. We have (i) because otherwise,
G would contain a subgraph G with

aq(G) < |V(G)], w(G) < ¢

Since w (G) < g, the g-norm B, (M) of any g-optimal clique partition M is
equal to | V(G) |, and consequently:

0,(G) =V (G)].
S0, a4(G) < 04(G), a contradiction.

We have (ii), because for a subgraph G of Gy, a g-optimal partition M
contains exactly v(G9*1) classes of size ¢ + 1, and , consequently,

v (GTT) = |V(G)| = By(M) = |V(G)| - 64(G).
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Because of (i), the subgraph G is g-colorable iff it can be obtained from G by
removing a transversal set of GSH, and , consequently,

04(G) = ag(G) = |V (G)| = 7(GT*).

Thus, v(GIt1) = 7(GItL).
2. Assume that the graph Gy satisfies (i) and (ii). Then, for every subgraph
G of Go,

ag(G) = |V(G)| = 7(G™) = |V(G) | = v (GT) = By(M) = 6,(G)

Thus,G) is g-perfect.

Corollary. A K,-free graph G is 2-perfect if and only if the two following
conditions hold:

(i’) G does not contain an induced Cay 1 with k > 2;

(ii’) the triangle-hypergraph G? is mengerian.

(From Theorem 1 with ¢ = 2.)
When w (G) is not specified, another characterization can be obtained by the

minimax theorem of linear programming. Let G be a graphon {21, z2,...,2,};
denote by G7t! a hypergraph on V (G) whose edges are the maximal cliques
of G having cardinality > ¢ + 1; let E{, Ej, ..., E/ denote its edges, and put
E! ={x;}fori=1,2,...,n.

-Denote by A the incidence matrix of the hypergraph

H=(E,E,...,E. E!,E},...,E").

Theorem 2. Let q be an integer > 2. A graph Gy is g-perfect if an only if the
two following conditions hold:

(i) every subgraph G of Go with w (G) < q is g-colorable

(ii) for every subgraph G of Go if A denotes the incidence matrix of the
hypergraph H = (E},...,E/ ,EY,..., E!") obtained from Gt by adding
a loop at each vertex, and if ¢ = (q,q,...,q,1,1,...,1) denotes the (m + n)-
dimensional vector with the first m coordinates equal to q, the linear problem:

n
maximize th =1.t
Jj=1

) t=(t1,tz,...tn) > 0
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A*t <q
and its dual:

m n
minimize qz yi + Z y: = q.y.
i=1 =i

(H) y=(yjll_ayé,'“>y;nay”17y”2"'-ay”n)20
Ay >1

have both integral solutions.

Proof. Remark that each coordinate of an integral solution t of (I) is equal
either to 0 or to 1; furthermore, t is the characteristic vector of a set T' with
w (G1) < q, |T| maximum; hence if (i) holds, we have:

1.t = o, (G).

Remark also that an integral solution y of (II) is the characteristic vector
of a clique covering of G; this clique covering gives also a g-optimal clique
partition whose g-norm is equal to q.y, so q.y = 6,(G).

1. Assume that G is g-perfect. We have (i), because otherwise some subgraph
G with w (G) < ¢ would satisfy a,(G) < |V(G)|, and, as in the proof of
Theorem 1, we get:

0,(G) = |V(G)| > aq(G)

A contradiction.
We have also (ii), because, by (i), we get:

max {1.t /[t eN", A%t < q} = ag(G) = 6,(G) =
=min{q.y /y e N", Ay > 1}.

Hence,.(I) and (I) have both integral solutions.

2. Assume that (i) and (ii) hold true. Let G be a subgraph of Gy; let t° be an
integral solution of (I), and let y9 be an integral solution of (II). We have:

aq(G) = Z t? =max 1.t =miny.q = y°.q = 6,(G),
j=1

(because of (i) and of the Minimax Theorem).
Hence, G is ¢-perfect.
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3. The balanced graphs.

It seems difficult to characterize the structure of the graphs which are ¢-
perfect for all gq. By a theorem of Greene and Kleitman [17], the comparability
graphs have this property, by a theorem of Greene [16], the cocomparability
graphs have also this property. Later, Cameron [8] gave a statement including
these two results, and independently, we proved in [4] the g-perfectness for a
new class of perfect graphs: the balanced graphs.

We introduced in [2] the balanced hypergraphs to extend the properties
of the totally unimodular matrices; a hypergraph H = (E1,Fs,...E,;) on
X = {z1,22,...,2,} is balanced if every cycle of odd lenght k¥ > 3, say
{z1, E1,%2,...Tk, Ex, 1) has an edge E; containing three of the z;s. The
recognition of a balanced hypergraph can be done in polynomial time (Conforti,
Cornuéjols, Rao, [10]). A graph G is balanced if the hypergraph H (G) of the
maximal cliques in G is balanced. It is well known that every balanced graph
G is perfect. '
Furthermore,

Theorem 3. Every balanced graph is q-perfect for all ¢ > 1.

Proof. Let G be a balanced graph and let ¢ > 1; it suffices to show that the
conditions (i) and (ii) of Theorem 2 hold. The condition (i) follows from the
fact that GG is perfect. To show (ii), recall a theorem of Fulkerson, Hoffman,
Oppenheim [14], which states that the incidence matrix A of a balanced
hypergraph of order n satisfies, for m = m (H) and q € N,

max{l.t /teN", A"t < q} =min{qy/y e N", Ay > 1}.

Since the hypergraph H obtained from H (G) by adding a loop at each vertex
is balanced, the condition (ii) follows.

Though they do not have a simple easy characteristic property in the context
of Graph Theory, the balanced graphs include many well known classes: interval
graphs, line graphs of bipartite multigraphs, cacti (whose blocks are cliques),
intersection graphs of a family of directed paths in a tree (with directed edges),
and , more generally, all the intersection graphs of unimodular hypergraphs; also
the intersection graphs of a family of balls in a tree and all the intersection graphs
of totally balanced hypergraphs occuring in location problems (Tamir, Lubiw,
etc..., see [3], Chap. 5).

Let Hy k > 3 be a graph with 2k vertices consisting of the union of a clique
{a1,az,...,ax} and astable set (b, b, ..., by), together with a hamilton cycle
[a1,b1,a2,,...,bk,a1]; Hy is sometimes called a k-sun (or k-trampoline), and
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Hj is called the Hajos graph. Farber [12] has shown that H (G) is totally balanced
iff G is triangulated (every cycle > 4 has a chord) and no subgraph is isomorphic
to a k-sun with k > 3. By a similar argument, we obtain:

A triangulated graph is balanced if and only if it does not contain an induced
k-sun with k odd > 3.

Let G be a balanced graph and let C be a clique of G. We say that a vertex
x dominates C if x ¢ C and C' U {z} is also a clique. For a balanced graph,
the prohibited configurations are the odd cycles u such that: each edge e € 1
is contained in a clique C, with C, Ny = {e}, and which is dominated by no
vertex in . These cycles are called unbalanced. It is easy to show that if an
unbalanced cycle p is a triangle, the only minimal configuration associated with
i 1is the Hajos graph (plus, eventually, additional edges having no endpoints on
f+); in general, one can suppose that the cliques C,, are triangles, but apparently,
there is no simple description for all minimal prohibited configurations.
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