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ON GRAPHS THAT ARE CRITICAL WITH RESPECT
TO THE PARAMETERS: DIAMETER,
CONNECTIVITY AND EDGE-CONNECTIVITY

LOU CACCETTA

In graph theory, the term critical is usually used with respect to a specified
graph parameter P and applies when the graph GG under consideration has the
property P but alteration of G' (such as vertex deletion, edge deletion or edge
addition) results in a graph not having property P. In this paper, we consider
graphs which are critical with respect to parameter P under the single operation
of: deleting a vertex; deleting an edge; adding an edge. In particular, we focus
on the graph parameters: diameter, connectivity and edge-connectivity. We
review important results and mention many open problems.

1. Introduction.

Graph theory can be conveniently used to model large complex systems,
such as: computer networks, electronic circuits, communication networks, as-
sembly production lines, pipeline networks and traffic networks, whose proper
performance requires the correct functioning and interaction of the system many
components. In the graph model of such systems vertices represent components
and edges (arcs, when orientation is a factor) represent the interactions between
the components. This provides us with a structural model of the system being
studied. Non structural information such as cost, capacity, efficiency and reliabil-
ity can be incorporated into the graph theoretic model by assigning appropriate
weights to the vertices and edges of the graph.
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In many applications, particularly in the area of network design, the graph
theoretical problem that arises is the following:

Let ¢ (n, P) denote the class of graphs on n vertices satisfying a set
of properties P. Given a performance measure ), the problem is to
characterize the optimal, with respect to M/, members of ¥(n, P).

The set of properties P reflect the network requirements such as: reliability,
efficiency, capacity, and throughput and are usually expressed in terms of bounds
on certain graph parameters such as: connectivity, diameter and degree. M could
refer to cost, output, or a graph parameter such as: number of edges, number of
vertices, connectivity and diameter.

For given n, P and M a number of graph optimization problems arise; for
a detailed discussion we refer to Caccetta [10] and Caccetta and Vijayan [17]. In
the characterization of the class ¥ (n, P) it is often fruitful to study a restricted
class of graphs the so called “critical graphs”.

The term critical is used in the literature in several ways. Usually it is used
with respect to a specified graph parameter P and applies when the graph G under
consideration has the property P but alteration of G (such as vertex deletion,
edge deletion or edge addition) results in a graph not having property P. The
resultant critical class of graphs has more structure than the general class and this
structure can be utilized to yield a considerable amount of useful 1nformat10n
Often there is no loss of generality and quite a lot; to, gam in consldenng this
class of graphs. T T ST TN

The critical graphs considered here: arise: under the smgle operatlon of :
deleting a vertex, deleting an edge, adding an edge. Such graphs have been
considered by many authors for a number of parameters including: minimum
degree, connectivity, edge-connnectivity, diameter, chromatic fiumber and var-
ious covermg numbers: (vertex, edge, clique, etc,).. It is not our. intention, here
to review all.this- work in, de;all however, we- menthn the, follcwmg 1mportant
been studled 1nclude connectwaty and edge-connectlvny (Dlrac [24},\,Ha11n [32-
34], Mader [41. 45] Bollobas {5], Cai [18- -201, Budayasa et, al. [8; M dlameter
(Anunchuen and. Caccetta [3] Caccetta and ‘Haggkvist [11] Fan, [26], Fured1
[27], Gliviak. [28] . Glivjak and, Plesmk [31]‘, Glivjak.et. al. [30],. Plesnlk [48}),‘
chromatlc—mdex (Yap. [50]);, and the vertex covering- number (see. Lovasz and
Plummer, [40]) Under the single operation:of edge- addltxon the parameters that
have been studied include: diameter, (Caccetta and Smiyth [ 12 -16),.Ore [47]); lc-
extendability (Anunchuen and Caccetta [2]). Under the smgle operatlon of vertex
deletion the parameters that have been studied ihclude::connectivity (Chartrand
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et. al. [21], Entringer [25], Hamidoune [35], Krol and Veldman [36]); edge-
connectivity (Cozzens and Wu [22-23]); diameter (Boals and Ali [4], Gliviak
[29] and Plesnik [48]). |

In this expository paper we focus on graphs critical with respect to the graph
parameter connectivity, edge-connectivity and diameter. These parameters are
considered important in the area of network design as they provide measures of
network efficiency and reliability. For example, in a communication network the
minimum number of link (centre) failures required to destroy communication
between at least two centres in the network corresponds to the edge (vertex)-
connectivity of the graph representing the network. The maximum number of
links over which a message between any two centres in the network must travel
corresponds to the diameter of the graph representing the network.

Section 2 considers diameter critical graphs whilst Section 3 considers
graphs that are critical with respect to connectivity and edge-connectivity. We
conclude this introduction with some basic graph theoretic terminology.

For the most part we use standard graph theoretic notation and terminology.
Thus G is a simple uindirected graph with vertex set V(G), edge set E(G),
minimum degree §(G) and maximum degree A(G). The complement of G is
denoted by G.

Let G and H be graphs. We denote the union and intersection of G and H
by G U H and G N H, respectively. The join of two disjoint graphs G and H,
denoted by G V H, is the graph obtained from G N H by joining each vertex of
G to each vertex of H.

The complete graph on n vertices is denoted by K,,. The complete bipartite
graph with bipartitioning sets of order n and m is denoted by K, ,,; that is
Knm = =K,V K,,. The cycle on n vertices is denoted by C,,. The distance
da (:L‘ y) between the two vertices x and y is defined as the length of the shortest
(z,y)-path in G if there is no path connecting x and y we define dg(z,y) to
be infinite. The diameter d(G) of a graph G is defined as:

d(@) = da(z, ).
(@) _w,yrgg;gG){ a(z,y)}

The connectivity k(G) of G is defined as the minimum number of vertices
whose deletion results in either a disconnected graph or else the trivial graph
K. Similarly the edge-connectivity K'(G) of G is defined as the minimum
number of edges whose deletion results in a dlsconnected graph or else the

trivial graph K.
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2. Diameter critical graphs.

The diameter of a graph is an important graph theoretic parameter with
considerable application. The problem of characterizing graphs with a prescribed
diameter is very much unresolved. Indeed, not even graphs of diameter 2 have
been completely characterized. Usually, a number of graph parameters (such as:
order, minimum degree, maximum degree and connectivity) are studied with the
objective of determining the relationship between the parameters. The typical
approach is to fix some of the parameters and see how the others vary. The book
by Bollobds [5] contains an excellent account of such work. The recent review
by Caccetta [10] details some of the results since the publication of Bollobas’
book.

A well know elementary result states that if d(G) > 3, then d(G) < 2.
Bloom et. al. [7] proved that d(G) = 2 if and only if G is non-empty and
not spanned by a double star. They used this result to derive a number of
necessary conditions for a graph to have diameter 2. Recently, Achuthan et.
al. [1] considered the problem of characterizing the class:

G(n,2,y) ={G: |V(G)| = n, d(G) =z and d(G) = y}.

Some useful results were obtained.

Many authors have studied graphs whose diameter changes by the dele-
tion/addition of edges and by the deletion of vertices. In this section we discuss
some of the important results and conjectures in this area. We consider these so
called critical graphs in terms of the operation: edge deletion, edge addition, and
vertex deletion.

2.1 Edge Deletion.

Let G be a graph having diameter k. G is said to be (k,t)-critical if for
any E' C E(Q), d(G — E’) > k if and only if | E’| > t. Denote the class
of (k, t)-critical graphs by ¢ (k, t). (k, 1)-critical graphs do exist. For example,
Cor €9 (k, 1), C2‘k+1 €Y (k, 1), Kn,m €Y (2, 1), K, € g(l, 1) and the well
known Petersen graph is in the class ¢ (2,1). In fact, any graph of diameter k
having girth (length of smallest cycle) at least k + 2 is in the class ¢ (k, 1).

The class ¢ (k, 1) was first studied by Glivjak [28], Glivjak et. al. [30],
Glivjak and Plesnik [31] and Plesnik [48]. We mention briefly some of the more
important results obtained by these authors.

In [31] it was proved that given any graph H there exists a graph
G € ¢ (k,1) that contains H as an induced subgraph. More specifically, if
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H €% (d,1), then the graph G* obtained by adding to each vertex of H a
path of length k containing k new vertices is in the class ¢ (d + 2k, 1). This
along with its converse was established in [48]. Note that the graph G* has
connectivity 1. Graphs with higher connectivity were also constructed. In fact,
for any given integer £ > 1 and r > 2 there exists an r-regular, r-connected
graph G € 4(k,1). The graphs constructed in [48] have a large number of
vertices. This suggests the following problem:

Problem 2.1. Given integers k > 2 and r > 3, for what value of n does there
exist an r-regular(-semiregular), r-connected garph G € 4(k, 1) of order n?

The same question could be asked with an edge-connectivity condition and
also a minimum degree condition.

One interesting question is that of determining the number of edged of a
graph G € ¢ (k, 1). More specifically, since a tree of diameter  is (k, 1)-critical
the following problem is of interest.

Problem 2.2. Fork > 2 andn > k + 1, determine
emax (k) = max {|E(G)| : Ge%(k,ll)) and |V(G)| =n}.

Also, for what value of m does there exist a (k, 1)-critical graph on n vertices
having m edges? ‘
Plesnik [48] proved that emax (k) > % ( ’2‘) In the same paper he made the

following well known conjecture for k = 2 which was made, independently by
Simon and Murty (private communication).

Conjecture 2.1. Let G € 9(2,1) be a graph on n vertices. Then

20)] < Ln?)

with equality holding if and only if G = KL%nJ L

This conjecture has been studied by: Caccetta and Higgkvist [11] who
proved the bound .27n2; Fan [26] who improved the bound to .2532n2; and
very recently by Fiiredi [27] who established the conjecture for extremely large

n.
Fiiredi [27] made the following conjecture:
Conjecture 2.2. Let G be a graph of order n satisfying:
(i) every pair of vertices is joined by at least £ disjoint paths of length < 2,
and
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(ii) the deletion of any edge of G destroys property (i).
Then

BG)I < (€= 1)(n~£+1)+[F(n—+1)2)].

The complete tripartite graph with parts of sizes £ — 1, |3(n—£€+1)] and
(n — £+ 1)] satisfies the condition (i) and (ii) above and has -1)(n—-L+
+ |i(n - £+ 1)%] edges.

A number of other conjectures can be found in [27]. We noted earlier that
any graph of diameter k having girth at least k+2 is in the class ¢ (k, 1). Gliviak
[28] proved that for any integer k > 2 and for any graph H of girth at least k + 2,
there exist a graph G € ¥(k; 1) having girth at least k£ 4 2 containing H as an
induced subgraph. Also, the author established a number of estimates for the
minimum and the maximum degree as well as the size of such graphs. For the
particular case of k = 2, Glivjak et. al. [30] characterized (2,1)-critical graphs
of girth at least four.

The class of ¥(k,t), t > 2 has only been studied by Kys [38] and
Anunchuen and Caccetta [3]. Kys [38] made the following conjecture:

Conjecture 2.3. ¥ (k,t) =0 fork >2,t > 2.

In his paper Kys [38] proved the conjecture for about half the cases, namely:
k=2k=3k=4,t > 3;and for k > 2,t > k. Recently, Anunchuen and
Caccetta [3] proved the conjecture for: kK > 2, ¢ > 3; and for k = 4 and 5. This
leaves unresolved the case k£ > 6 and ¢t = 2. It would be interesting to resolve
this remaining case.

Finally, we mention one variation of (k, 1)-critical graphs studied by Kys
[37]. A graph G of diameter k is said to be strongly (k, 1)-critical if for every
edge e = ry of G, dg_zy(u,v) > k if and only if u = z and v = y. Observe
that Cj is strongly (2,1)-critical. Kys [37] conjectured that:

3
1)

Conjecture 2.4. For every integer k > 2, there exists a strongly (k, 1)-critical
graph.

In his paper, Kys [37] established this conjecture for the case k£ = 2, by
proving that given any graph H of girth at least 4 there exists a strongly (2,1)-
critical graph G containing H as an induced subgraph. Further, examples for
k = 3,4 and 6 were given.

Strongly (k,1)-critical graphs are related to (k, 1)-critical graphs having
girth at least k£ + 2 according to the following result of Kys [37]. A graph G is
strongly (k, 1)-critical if and only if G € 4 (k, 1), has girth at least k + 2 and for
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every pair of non-adjacent vertices  and y there are at least two edge-disjoint
(z,y)-paths of length at most k.

2.2 Edge Addition.

Now we consider graphs whose diameter decreases with the addition of an
edge between any pair of non-adjacent vertices. A graph G of diameter D > 2
is said to be D-critical if d (G + e) < D for every edge e of G. D-critical
graphs can be conveniently studied by considering the distance decomposition
of a graph. _ '

Let G be a graph of diameter D > 2. Then V(G) can be partitioned
into- D + 1 non-empty sets Lo, L1,...,Lp, such that Ly = {u} and L,,
t = 1,2,...,D, denotes the set of vertices of G at distance ¢ from wu. u is
called a peripheral vertex; in fact any vertex z of G having a vertex at distance
D is a peripheral vertex of GG. _

Ore [47] introduced the concept of D-critical graphs and observed that
a graph G is D-critical if and only if every peripheral vertex u gives rise to
a distance decomposition Ly = {u}, Ly,...,Lp such that |Lp| = 1 and
every vertex of L;, 7 = 0,1,...,D — 1, is adjacent to every other vertex in L;
and L;41. Thus a D-critical graph is completely determined once |L,| = ng,
¢ =0,1,...,D, are specified. The sequence (ng,ny,...,np) is called a vertex
sequence. |

The above simple observation motivated Ore [47] to introduce a connecti-
vity requirement. Let 4, (n, D, K) [¢4,(n, D, K)] denote the class of D-critical
K -edge [respectively, K -vertex]-connected graphs on n vertices. The problem
that arises is the following:

Problem 2.3. Characterize the classes 4.(n,D, K) and 4,(n, D, K). In par-
ticular, determine

fz(n,D,K) ={|E(@Q)| : G€¥,(n,D,K)}, T =e,v.

Ore [47] completely characterized the class ¢, (n, D, K). In particular he
showed that the edge-maximal members of this class have a very simple structure.
For D > 4 this simple structure is described by the requirement that an edge-
maximal graph must have vertex sequence (1, K,ng,ns,...,np_z, K, 1) with
n; = K for all ¢+ > 2 except possibly one or a consecutive pair. Note that the
connectivity constraint imposes the condition n; > K fori =1,2,...,D — 1.
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The edge-minimal members of &4, (n, D, K') were completely characterized
by Caccetta and Smyth [12]. In the same paper, the edge-minimal members
of % (n,D,K) were completely characterized for sufficiently large n; the
problem for ”small” n is open and appears difficult. As one would expect,
for large n, the edge-minimal members of ¥,(n,D,K) and 9,(n,D, K )
coincide. The characterization of the edge-minimal graphs was in terms of vertex
sequences. Unlike the edge-maximization problem, the specification of the vertex
arrangement depends, not on the maximum concentration of vertices, but rather
on, the maximum spreading of vertices.

The edge-maximal members of &, (n, D, K') were completely characterized
by Caccetta and Smyth [15]. The edge-connectivity requirement can only be
satisfied if there are at least K edges between the vertices in L; and L; i,
t =0,1,...,D — 1. That is, n;n;41 > K fori = 1,2,...,D — 1. This
requires that n;—1 +n; +ny41 > K+ 1fori=1,2,...,D —1.For D > 6,
K 2> 8, it was proved in [15], that the vertex sequence of an edge maximal graph
G €%.(n, D, K) takes the form (1, K, na,...,np_1, K, 1) with n; niy1 > K
fori=2,3,...,D~3,andn;_1 +n;+nit+1 = K+1forall§,3<i < D—3
éxcept possibly one which must be 4 = 3 or ¢ = D — 3. The structure of edge-
maximal graphs dependes heavily (see Caccetta and Smyth [13]) on the values
of n and D.

The question of determining the function f,.(n, D, K) defined in Problem
2.3 1s very much open, though some results have been obtained by Caccetta and

Smyth [14, 16].

2.3 Vertex deletion.

In this section we consider graphs whose diameter changes when a vertex
is deleted. Consider the graphs displayed in Figure 2.1.

L 4 L g
*r——@ L 2 &
L g ®-
G]_ G2 G3

Figure 2.1
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Clearly d(G1) < d(Gy —v) forevery v € V(Gy), d(G2) > d(Gy —u) for every
u € V(Gz), and d(G3 — a) < d(G3) < d(Gs —w) forevery w € V(G3) \ {a}.
Thus the diameter could increase or decrease when a vertex is deleted. This
motivates the following definition.

A graph G is said to be v-critical,vt -critical, v™-critical if d(G — u) is
not equal to, greater than and less than, respectively, d(G) for every u € V(G).
Observe that G is v -critical, G is v~ -critical, and Gj is v-critical. Note also
that G5 is not v -critical. / '

Gliviak [29] proved that a v-critical graph G hag at most two elements in
the set {u € V(G) : d(G — u) < d(G)}. An immediate consequence of this is
that a graph G is v~ -critical if and only if G & K3 or K. Thus only v- and
v -critical graphs are of interest.

v-critical graphs of diameter 2 were first studied by Glivjak et. al. [30].
They completely characterized the triangle free v-critical graphs of diameter 2
having order at most 10 and gave constructions for higher orders. The only other
work on v- and v -critical graphs that we are aware of is that of Bosis and Ali
[4], Gliviak [29], Glivjak and Plesnik [31] and Plesnik[48].

Gliviak [29] established a number of results concerning v- and vt -critical
graphs. In particular, he proved that a graph G with §(G) > 2 having girth at
least d(G) + 3 is v-critical. Further, he proved that every graph H is an induced
subgraph of a v-critical graph G of diameter D > 2 that is not vT -critical. The
graph G is given in Figure 2.2,

Ly Lo Lp-2 Lp_1
/‘ @ & @
. L 2 L 4 @
—"' . n=|V(H)|
\; L ‘; @
HVK; Knt1 Kn+1 HvVK;
Figure 2.2

Note that all vertices in L;, ¢« = 2,3,...,D — 2 have degree 2 in G and are
joined to exactly one vertex in L;_; and one vertex in L; ;.

Boals and Ali [4] proved that every graph H is an induced subgraph of a
vT -critical graph G of diameter D > 2; the graph G constructed is given in
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Figure 2.3.

The graph given in Figures 2.2 and 2.3 have nD + L and (n 4+ 1)(D = 1) + 2
vertices, respectively. It would be of interest to determine the smallest graphs
having the required property.

L, Lo ~ Lp_, Lp_; Lp
/’ —@ PPN & L .
S : : T | n=va)
~ . ‘ R
K. K, Ka H H
Figure 2.3

Problem 2.4. Given a graph H and an integer D > 2 find a vt -critical graph
containing H as induced subgraph and having as few vertices as possible. The
same question can be asked for v-critical graphs.

There is one nice caracterization theorem concerning v-critical graphs due
to Gliviak [29]. To describe this result we need the following concept. A branch
at a cut vertex u of GG is a maximal subgraph of G containing u such that w is
not a cut vertex. The result is the following. A v-critical graph G of diameter
D > 2 is either a path of lenght D or a block with at most two branches which
are paths each of lenght at most [ $ D | forodd D > 5 and |1 D| — 1 otherwise.
A consequence of this is that every v -critical graph is a block. This latter result
was also proved by Boals and Ali [4]. We note that the path lenght specified in
the Gliviak’s result can be achieved — construction were given in [29].

We conclude this section by stating some problems and conjectures.

Problem 2.5. Characterize v-critical and (v )-critical graphs with prescribed:
(a) connectivity, '
(b) edge-connectivity;
(c) minimum degree;
(d) number of edges.

The following two conjectures were made by Boals and Ali [4].
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Conjecture 2.5. If G is a vT-critical graph of diameter D, then d(G — z) <
2D — 1 forevery x € V(G).

Conjecture 2.6. If G is a v't-critical graph of diameter 2, then A(G) <
3V (G
Conjecture 2.5 was proved for the cases D = 2 and 3.

3. Critically connected graphs.

In this section we consider graphs that are critical with respect to the graph
parameters connectivity  and edge-connectivity x’. A graph G is said to be
P-vertex-critical, P = k or ¥/, if P(G — v) < P(G) for every vertex v of G.
Similarly, G is said to be P-edge-critical, P = x or &/, if P(G —¢) < P(G) for
every edge e of G. Let €, (n, P) and €.(n, P), respectively, denote the class of
P-vertex-critical and P-edge-critical graphs on n vertices.

The main problem that araise concerns the characterization of the classes
Gv(n, k), Gu(n, k'), €e(n, k) and €. (n, k’). Of particular interest is the problem
of determing the number of edges that a graph in each of these classes can have. It
is very well knonw that for any graph G, x(G) < £'(G) < §(G). Further, there
exists a class of graphs (sometimes referred to as Harary graphs) on n vertices
with x = k’ = § having [ nd] edges. This edge-minimal class belongs to each
of €u(n, k), €u(n, k'), €(n, k) and €.(n, k'). However, the non edge-minimal
graphs are not so easily described. :

The graphs in Figure 3.1 show that these classes are not necessarily
identical: clearly G'1, G, Gz and G4 belong only to the class %,(10, x(G1)),
%,(10,K'(G2)), €.(10, k(G3)) and €.(10, k'(G4)), respectively.

The class %.(n, x) was first studied by Dirac [24] who obtained a charac-
terization for the case x = 2. He established that a graph G € €, (n, x = 2) has
§(G@) = 2 and ¢(G) < 2n — 4. He also proved that G is 3-colourable; which
means that the vertex set of G can be coloured by using three colours such that
no two adjacent vertices receive the same colour. A similar result was obtained
by Plummer [49].

Halin characterized (see [34]) the edge-maximal graphs of %.(n,x = 3)
for n > 8. He established that the complete bipartite graph K3 3 is the unique
edge-maximal graph. For the more general case, Mader [42] proved that for
n > 3k — 2 the complete bipartite graph Ky ,—x is the only edge-maximal
member of 6, (n, k = k). Further, for k+1 < n < 3k—2, Cai[18] characterized
the edge-maximal members of %, (n, kK = k)

Halin [32] proved that if G is in the class €.(n, k) then §(G) = &(G).
In a later paper, Halin [33] established that every graph G € %, (n, k) has more



224 LOU CACCETTA

Figure 3.1

than 3+/A(G) vertices of degree §(G). He also established a better bound when
k = 3. More specifically he proved that if G € %.(n,x = 3) then G contains
at least %(n + 3) vertices of degree 3. Bollobés [6] improved and extended this
result to the general case. In particular, he proved that every G € %, (n, k = k)
contains at least Lk—;ki)_—"liz vertices of degree §(G) = k. |

‘The above results are about all that is knonw about the class %, (n, ). This
leaves open a number of extremal problems including the interesting problem of
characterizing the edge-maximal members of €, (n, ).

We next consider the class €, (n, ). A consequence of the definition of
vertex-criticality is that if G € €,(n,x = k), then k(G —u) = k — 1 for
every vertex u of GG. An early result of Chartrand et. al. [21] established that
I(G) < %k‘ — 1 for G € €,(n,k = k), k > 2. Hamidoune [35] proved that
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G contained two such vertices with degree at most %k- — 1, and this is the best
possible.

Entringer [25] characterized the edge-maximal graphs of %,(n,x = 2);
these graphs turn out to be unique for n > 3 except n = 11. Krol and Veldam
[36] considered the subclass &7,(n, k) of €,(n, k) consisting of those graphs
in which every vertex is adjacent to a vertex of degree x. They characterized
the edge-maximal members of <, (n, k) for k > 3. In particular, they showed
that for k = 3 the edge-maximal members of &7, (n, k) coincide with the edge-
maximal members of %,(n, k). They conjectured:

Conjecture 3.1. The edge-maximal members of &, (n, k) coincide with the
edge-maximal members of €,(n, k) for k > 3.

Note that Entringer’s characterization of class %, (n, x = 2) demonstrates
that the above conjecture is not valid for k = 2, hence the condition x > 3.

The above few results are all that is known about the class %, (n, k).

The class €, (n, x’) has been studied by Cozzens and Wu [22, 23]. They
considered only the subclass €”/(n, k') consisting of those graphs for which
k'(G—v) = Kk'(G) —1 forevery vertex v of G. Cozzens and Wu [22] established
that the well known Harary graphs are the edge-minimal members of €, (n, ')
for k" > 2. They also showed that the problem of finding an edge-minimal
critical spanning subgraph H in a given graph G is NP-complete. In a latter
paper Cozzens and Wu [23] characterized the edge-maximal members of the
subclass 7, (n, k') of €, (n, k) consisting of those graphs in which every vertex
is adjacent to a vertex of degree «'. As these are the only results, the problems
of characterizing % (n, k') and the edge-maximal members of % (n, k') have
hardly been addressed.

Finally, we consider the class %, (n, x’) for which there are many results.
Lick [39] proved thatif G € €,(n, k" = k) then §(G) = k. Mader [41] extended
this result by showing that such a G must have atleast k£ + 1 vertices of degree
. In a later paper [43], he proved that the number of vertices of degree « in a
graph G € €, (n, ' = k) isatleast | 775 | + k& forodd k > 5, L%j +k — 2 for
odd k > 7, and at least | 2=L | 4+ k + 1 for even k. These results have recently

2k+1
been improved by Cai [20], who established the bound: | £5y | + & for even

k > 4 and L-E%J + k — 2 for even k > 10. In a forthcoming paper (personal
communication), Mader gives the exact formula.

Mader [41] proved that for n > 3k the edge maximal graphs of €,.(n, ' =
k) coincide with the edge-maximal graphs of the subclass . (n,x’ = k) of
%e.(n,k’ = k) consisting of those graphs in which every vertex is adjacent to
a vertex of degree . The corresponding result for n < 3k was proved by Cai
[19] and, independently, by Budayasa et. al. [8]. |
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Budayasa et. al. [9] determined completely the size spectrum of the class
Ce(n, &’ = k).

We conclude this section by noting a generalization of critically connected
graphs introduced by Maurer and Slater [46]. A graph G is called r-critically
k-connected or simply (t,k)-critical if k(G —V')-= k- |V'| forall V' C V(G)
with |V'| < t. For example, K,,+; is (n,n)-critical. The k-regular bipartite
graph on 2k + 2 vertices is (2k, k)-critical. Mader [44] conjectured that this
bipartite graph is the only (2k, k)-critical graph. (¢, k)-critical graphs have been
studied in [44 - 46]. The following conjecture was stated in Maurer and Slater
[46].

Conjecture 3.2. If G is a (t, k)-critical graph with
| 1 _
1§k_<_,jtJ or k=t,

then G = Kt+1

Mader [45] has con31dered thls conjecture and has proved that if a non-
complete (¢, k) graph exists it must contain less than 3(¢t — 1) vertices.
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