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PATH-DECOMPOSITIONS

KATHERINE HEINRICH

A path-decomposition of a graph is a partition of its edges into subgraphs
each of which is a path or a union of paths (a linear forest). We survey known
results when the graph and the linear forest are of prescribed types, and when
the decomposition satisfies further additional properties.

1. Introduction.

The basic question concerning graph decomposition is: When can the
edges of a given graph be partitioned into a specified collection of subgraphs?
Specifically, let G be a graphand # = {F, F? ... F"} be a family of graphs.
An F -decomposition of G (also called a (G, F)-design) is a partition of the edge
-set of G into the 7 subgraphs F, F2, ..., F". In the case when all subgraphs in
F are isomorphic to the graph F' we will refer to the design as (G, F)-design. To
date the most far-reaching result is that of Wilson [71] who proved that there is a
(K'n, F)-design for all sufficiently large n satisfying | V/(F) | < n,n (n—1) =0
(mod2 | E (F)|) and n—1 = 0 (mod d), where d is the greatest common divisor
of the degrees of the vertices in F'. (Note that except for the size” of n these are
precisely the easily determined necessary conditions for the existence of such a
design.) Several surveys of (G, .#))-designs have been written and the reader
is referred to Akiyama and Kano [1], Bermond and Sotteau [10], Chung and
Graham [18], Harary and Robinson [26], Rodger [58] and the outstanding book
of Bosak [13].
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The particular question we will consider in this paper is: For what G and
F , where the subgraphs in % are linear forests, does a (G, % )-design exist?
(A linear forest is a graph each component of which is a path.) Throughout
we will always assume the graph being considered is simple unless it is stated
otherwise.

What follows is a list of notation that will be used:

G*  The graph G in which every edge has multiplicity \.
DG The graph GG with each edge replaced by two oppositely directed
arcs.
mG  m edge-disjoint copies of G.
E(G)  The set of edges in the graph G.
V(G)  The set of all vertices in G. :
x'(G)  The edge-chromatic number of G.
A(G)  The maximim degree in G.
§(G)  The minimum degree in G.
GUH  The edge -disjoint union of the graphs G and H.
K,  The complete graph on n vertices.
P, The path with k vertices and k£ — 1 edges.
ﬁk The directed path P.
Cx  The cycle with k vertices.
K (m,n)  The complete multipartite graph with m parts each of size n.

Ko, a5,....a,,  The complete multipartite graph with m parts of sizes a1, ag, . . .

cer sy Q.

Zym  The cyclic group of order m.

2. (G, F)-designs, where F is a linear forest.

A (G, F)-design when F is a path is usually referred to as a path-
decomposition. Certainly the most well known path-decomposition is the
(K2n, P2y, )-design which is easily derived from the (K5,,), Ca,, )-design (given
by Walecki [51, page 162]) on deleting a vertex.

Theorem 2.1. There exists a (Kay,, Pay,)-design for all values of n.

Proof. With the vertices of K5, labelled by Zs,,, the paths are F* = [i,7 +
,i4+2n-1,i4+2,...;i+n+2,i+n—-1i+n+1i+n],1 << n.
Many years later Hell and Rosa [30] defined a balanced graph design to
be a (K, F)-design with the additional property that each vertex of K} lies in
the same number of copies of F' (hence the term balanced). They focussed their
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attention on the case when F' = P,. It is not difficult to show the existence of
all (K}, P,)-designs (which are necessarily balanced).

Lemma 2.2. There exists a (K3, ,, Pan+1)-design for all values ofn.

Proof. With the vertices of K2, labelled by Z,41, the paths are F* —
i+ 1i4+2n,i+2,i+2n—1,...,i+n—-1Li+n+2,5+n,i+n+ 1],
1< <2n+1.

Corollary 2.3. Ther exists abalanced (K, P,)-design ifand only if An is even.

Partial results on the existence of balanced path-decompositions were
obtained by Hell and Rosa [30], Hung and Mendelsohn [40], and Lawless [46,
47]. Soon after complete solutions were independently presented by Huang [36]
and Hung and Mendelsohn [41].

Theorem 2.4. (Huang; Hung and Mendelsohn) There exists a balanced
(K, Py)-design if and only if .

an(n—1)=0 (mpd 2(k-1))

M (n—1)=0 (mod 2(k—1))
A(n—-1)=0 (mod k —1).

Huang [37] also gave necessary and sufficient conditions for the existence
of balanced (K}, P, U P;)-designs, where P, U P; is a linear forest.

Others were meanwhile considering the more general question of the
existence of (K, F')-designs, particularly for small graphs F. When F is the
path P it is easy to see that the only necessary condition for the existence of
the designis An (n —1) = 0 (mod 2 (k — 1)). The existence of these designs is
trivially observed when £ = 2. We will prove the result for the case k = 3 and,
although the proof is quite simple, it serves to illustrate the recursive technique
that is frequently used.

Theorem 2.5. There exists a (K., P3)-design if and only if \n(n — 1) = 0
(mod 4).

Proof. Only two cases need to be considered:
(@) A=1landn=0,1 (mod4)and
(b) A=2andn =2,3 (mod4).
In all constructions V (K3,,, 1) = Zzm+1 and V (K3 ) = Zopm_1 U {oo}
We begin with the small designs.
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(K4, P3)-design: F* = [00,4,i+1],1<i <3
(Ks, P3)-design: F* =[i,5+1,i4+3],1<i<5
(KE, P3)-design: F* = [i,00,i + 1], Fit5 =
[i,i+2,i4+4,1<i<5
(K2, Ps)-design: F* = [i,i + 1,6+ 2], F**7 = [i,i 4+ 2,i + 4], Fitl4 =
[(,i+3,0+6],1<i<7.

Also note that Cy = K 5 is the union of two paths of lenght two.

(@) If n = 4t, write K4y = tK4 U ({)K4,4. Since each subgraph has a
decomposition into paths of lenght two so too does Ky;. In the case
n = 4t + 1 add a new vertex, oo, and replace each of the ¢t (K4, Ps)-
designs with a (K5, P3)-design on the original four vertices and the vertex
0.

(b) Ifn=4t+2,write K3, 5 = (t —1)KZUKZU ("5 )KZ ,U(t—1)KZ.
Again, as each subgraph has a decomposition into paths of lenght two so
too does K2, ,. In the case n = 4t + 3 add a new vertex, co, as was done
in part (a), noting that a (K2, P3)-design is also required.

Bermond and Schonheim [9] gave constructions for (K, Py)-designs
(n = 0,1 (mod 3)) and Huang and Rosa [39] constructed (K, P;)-designs,
2 < k <9, for all possible values of n. Bermond, Huang, Rosa and Sotteau
[8] also constructed all (K, Ps)-designs and all (K,,, P, U P;)-designs. To
construct (K, 2Ps)-designs is a straightforward exercise. In fact using the
recursive method illustrated in Theorem 2.5, it is not difficult (although it does
take a little time) to construct all (K ;}, F')-designs, where F' is a linear forest on
at most six vertices. .

Finally in 1963, Tarsi [65] completely settled the question of the existence
of (K7, Py)-designs.

Theorem 2.6. ( Tars‘i) A (K, Py)-design exists if and only if \n(n — 1) = 0
(mod 2 (k — 1)) and n > k.

His method is quite different from either of the two we have so far described.
Fork < n—2,when A (n—1) iseven, K} is Eulerian. Tarsi produced an Eulerian
walk in which any two occurrences of a particular vertex are separated by at least
~k — 1 distinct vertices all different from it. This path can then be “broken” into
copies of P,. When A (n — 1) is odd a collection of paths of lenght k is first
~ chosen so that no edge occurs in them more than ) times and each vertex of K is
an endpoint of exactly one of them. When these paths are deleted from the graph
what remains is Eulerian and again an appropriate Eulerian walk is described.
‘The case k = n and &k = n — 1 are treated separately (but note Corollary 2.3
provides a solution in the case k = n).

Let us now return to the paper of Hell and Rosa. The main goal of that paper

[i,a + 1,i + 2], F©*10 =
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was to find all (K}, % P;)-designs (n = 0 (mod 3)), where 2 P is a linear forest
with each component a path of lenght 2. The question of the existence of such
designs arose from a recreational mathematics problem posed by Dudeney [19,
Problem #272] in which he asks the reader to arrange nine schoolboys so that on
each of six days they walk in three rows of three and on no occasion does any
boy walk twice beside any other. (The naming of the problem as the "handcuffed
prisoners problem” is a result of an alternate formulation also given by Dudeney
[20].)

To simplify notation, we will refer to a (K, (n/k)Py)-design (where
necessarily n = 0 (mod k)), as a resolvable (K}, Py)-design; meaning that we
have a (K, Py)-design with the property that the paths can be partitioned into
vertex-disjoint spanning subgraphs of K. Each spanning subgraphs is referred
toas a factor. (Such designs are necessarily balanced).

Hell and Rosa [30] and Nakamura, Kimura and Suganuma [53] obtained
partial results on the existence of these designs for general k. The second authors
considered in particular the case £ = 3 and in an unpublished manuscript (in
Japanese) they describe an investigation of the general case. Huang and Rosa [38]
made a thorough study of the resolvable (Ky, Ps)-designs showing that there
are precisely 334 of them which are not isomorphic. Fortunately, this calculation
was repeated by Ollerenshaw and Bondi [55] who determined that in fact there
are 332 non-isomorphic designs. The case £ = 3 was finally resolved by Horton

[33].

Theorem 2.7. (Horton) There exists a resolvable (K, P3)-design if and only
ifn=0(mod3)and A (n — 1) = 0 (mod 4).

In that paper Horton also showed that for n ”sufficiently large” the necessary
conditions for the existence of a (K, Pj)-design (obtained by simple counting)
are also sufficient. The case & > 4 was later resolved by Bermond, Heinrich and
Yu [6].

Theorem 2.8. (Bermond, Heinrich and Yu) There exists a resolvable (K, Py)
-design (k > 4) if and only if n = 0 (mod k) and Ak (n — 1) = 0 (mod 2
(k —1)).

There are two somewhat surprising features of the proof. First, it is not
particularly long and second, it does not contain the case k¥ = 3. The proof relies
on recursive ideas as described earlier and depends critically on the following
lemma which appears to be extremely fruitful and which has been of use in other
resolvable decomposition problems.

Lemma 2.9. Let H be a multipartite graph with V (H) = UX_|V; so that
for 1 < ¢ < j < K, the bipartite subgraph on vertex-set V; U V; with
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bipartition (V;,V;), is t((4,7))-regular, where t is a mapping from the set
{(5,7) : 1 <4 < j <k} 1o the non-negative integers. Let G (H) be a graph
with V (G(H)) = {1,2,...,k} in which the edge ij has multiplicity t((¢,4))-
There is a resolvable (H Pk) -design, if there is a (G (H), Py,)-design.

Proof.  Suppose there is a (G (H), P;)-design with paths P (1), P (2),...,
P(m), where m = ", <i<i<k t((lgz,al))) Each P (7) yields an appropriate factor
of H as follows. To each edge pq of P (1) associate a 1-factor Fy,, (i) from the
bipartite subgraph with vertex-set V,, U V,, so that U7~ * 1 Fpq(t) is the bipartite
subgraph on the vertex-set V,, U |2 (notmg that F,, (z) is empty if pq is not
an edge of P (7)). Clearly U, cp (i)qu(z’) is a factor of H, each component of
which is a path of lenght k — 1. :

We next consider (G, F)-designs where G is other than a complete graph,
and begin with ' = Pj3. Such designs were completely determined Kotzig
[44] but we will present the proof of Caro and Schénheim [14]. (Note that the
existence of a (G, Ps)-design is equivalent to the existence of a one-factor in
the line graph of G, a question which had already been considered and resolved
(for example, see [31]).)

Theorem 2.10. (Caro and Schonheim) There is a (G, P3)-design if and only if
each component of G has an even number of edges.

Proof. The necessity of the condition is obvious. The sufficiency is proved using
induction on the number of edges in the graph and we need only consider the
case when G is connected. If G has only two edges, then G = P;. If G is a cycle
of even lenght, there is a (G, P3)-design. If G has no cut-edge and is not a cycle,
choose an edge e of G’ with an adjacent edge f so that G — {e, f} is connected
and apply the induction hypothesis to obtain a (G — {e, f}, Ps)-design.

If G has acut-edge e, then G — e has two components A1 and H,, where H;
has an even number of edges and H; an odd number. If H; is not a single vertex,
then by induction we have an (H, P3)-design and an (H, U e, P3)-design. If
H, is a single vertex, let f be an edge of H, which is adjacent with e. Then if f
is not a cut-edge of H, we have an (H; — f, Pj)-designand ef = P3.If fisa
cut-edge, then Hz — f = H3 U H4 and we either have an (H3, P3)-design and
an (Hy, Ps)-design which together with the path ef give the decomposition, or
an (Hz Ue, P3)-design and a (H4 U f, Ps)-design.

Corollary 2.11. There is a (K.}, P3)-design if and only if An (n — 1) = 0 (mod
4).

Corollary 2.12. There is a (K .m» 3)-design if and only if Amn is even and
mn > 2.
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Truszczyriski [67] considered the question of the existence of (K7, ,,,, Pk)-
designs.

Theorem 2.13. (Truszczyrski) If m > n and either ) is even or m and n are
even, thereisa (K}, ., Py)-designifand only if \mn = 0 (mod k—1),m > [£]
and n > [517].

In that paper the case when A and at least one of m and n are odd was also
studied. In particular Truszczynski showed (using a simple counting argument)
thatif \ is odd, m > n, and either: m and k areeven, nisoddandk—1 > An;m

isodd, n and k are evenand k —1 > Am; orm and n are odd, and k — 1 > An,
then there is no (K ;}m, Py)-design. This discovery led him to conjecture that

except in these cases there exists a (K f;m, Py)-design if and only if Amn = 0
(mod k — 1), m > [£] and n > [551]. |

Ushio [69] and Ushio and Tsuruno [70] studied resolvable (K, a,....a,., Pk)
-designs.

Theorem 2.14. (Ushio) There exists a resolvable (K, », P3)-design if and only
ifm+n=0(mod3), m <2n<4m and 3mn = 0 (mod 2 (m + n)).

Theorem 2.15. (Uschio and Tsuruno) There exists a resolvable (K (Am ) Ps)-

design if and only if mn = 0 (mod 3) and XA (m — 1)n = 0 (mod 4).
Some time later Yu [72] substantially extend this work.

Theorem 2.16. (Yu) For k > 4, there exists a (K (’\m,n), Py)-design if mn =0
(mod k),A (m — 1)kn = 0 (mod 2 (k — 1)) and either n = 0 (mod k) or m = 0
(mod k). .

A

Corollary 2.17. If k is a prime, there exists a (K (mn)? Py)-design if and only
ifmn=0 (modk)and \(m —1)kn=0 (mod2(k—1)).

Using the above results Yu is also able to show that the necessary conditions
are sufficient when m = 2, 3.

Corollary 2.18. (Yu) (a) There exists a (K. ,,’),n, Py )-design if and only if 2n = 0
(mod k) and \kn = 0 (mod 2 (k — 1)).

(b) There is a (K;)’n,n, Py)-designifandonly if3n =0 (mod k) and An = 0
(mod k — 1).

Caro and Schonheim [14] gave necessary and sufficient conditions for the
existence of a (T, Py )-design, where T' is a tree. ,

We now turn our attention to the existence of (K, F')-designs where F
is a linear forest other than a path or the disjoint spanning union of isomorphic
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paths and begin by considering (G, F)-designs. Bialostocki and Roditty [11]
gave necessary and sufficient conditions for a (G, 3P;)-design showing that
with a finite number of exceptions, the design exists if and only if the number
of edges in G is divisible by 3 and A (G) < Jﬂ?,@—l This result was improved
substantially by Alon [2].

Theorem 2.19. (Alon) There exists a (G, tP,)-design if and only if | E(G)| = 0
(mod t)and tx'(G) < |E (G)|.

Proof. The necessity is obvious. For the sufficiency, first observe that if in
some graph there are two disjoint matchings of sizes m and n, where m > n,
then there exist disjoint matchings of sizes m — 1 and n + 1. Since, G has
an edge-partitioning into x’(G) matchings, applying the observation to pairs of
matchings yields the result.

Corollary 2.20. There exists a (K, tP;)-design if and only if An n—-1)=0
(mod 2t) and t < | Z].

For the case A = 1 this result was proven much earlier by Folkman and
Fulkerson [23]. The design is cyclic if there is an n-cycle o which permutes the
vertices and also maps the set of all matchings onto itself. Recently Rees [56] has
shown that in fact it is always possible to find cyclic (K, ¢P;)-designs when
t < 2. The case when ¢t = % (n even) was dealt with earlier by Hartman and
Rosa [27] who showed the designs exist except when n is at least 8 and a power
of 2, in which case they do not exist.

Alon’s result also settles the question for complete bipartite graphs.

Corollary 2.21. There exists a (K3, ,,,tP;)-design if and only if A\nm = 0
(mod t) and t < min{m,n}.

Favaron, Lonc and Truszczynski [21] considered other subgraphs; in
particular they considered the linear forest P, U Ps.

Theorem 2.22. (Favaron, Lonc and Truszczyriski) There exists a (G, P, U P3)-
design if and only if | E(G)| = 0 (mod 3), A(G) < | E(®)],¢(G) < ﬂggll
(where c (G) is the number of components of G with an odd number of edges),
the edges of G cannot be covered by two adjacent vertices and G is not one of
six specified graphs.

Corollary 2.23. There exists a (K, P, U P3)-design if and only if n > 5 and
A(n—1)=0 (mod6).

Kotzig [45] claimed that if G is a 3-regular graph, there exists a (G, Py)-
design if and only if G has a 1-factor. (To see this observe that the number of
paths of length 3 is the size of a 1-factor.) He asked for necessary and sufficient
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conditions for a (G, Pz,,..2)-design when G is (2n + 1)-regular. The only result
we have along these lines is that of Jacobson, Truszcynski and Tuza [42]. (We
do note, however, that Jiinger, Reinelt and Pulleyblank [43] have asked if there
exists a (G, Py)-design whenever G is a simple planar 2-edge connected bipartite
graph satisfying 4| E(G)| =0 (mod 3).)

Theorem 2.24. (Jacobson, Truszcyriski and Tuza) There exists a (G, Ps)-design
for every 4-regular bipartite graph G.

Closely related to this is the work of Bondy [12] on perfect path double
covers of graphs. He conjectured that for every graph G there is a decomposition
of G? into paths in which every vertex is the end-vertex of exactly two paths
(paths of length zero are assumed to have two identical end-vertices). This
conjecture was proven by Li [48]. Bondy further defined a k-regular path double
cover of a graph G which in our terminology is a (G?, Py )-design, calling it
perfect if every vertex is the end-vertex of exactly two paths. He asked for which
G and k such designs exist.

Theorem 2.25. (Bondy) If G is a connected simple graph, there exists a
(G2, P3)-design if and only if G is not a tree with a I-factor.

Theorem 2.26. (Bondy) If G is a connected simple graph, there exists a perfect
(G2, P3)-design if and only if G is unicyclic and each vertex of degree 2 lies on

the cycle.

Bondy extended Kotzig’s conjecture by conjecturing that if G is a simple
k-regular graph, then there exists a perfect (G2, Py41 )-design. In support of this
conjecture he proved its validity in the case k£ = 3.

Turning now to other linear forests, Ruiz [63] has shown that there is a
(Kay, F')-design for any linear forest F* with n edges. His result is proven by
choosing the “right” set of edges from the path F! (as described in Walecki’s
construction given in Theorem 2.1) to yield a subgraph isomorphic to £ in which
the differences on each edge are distinct, and then using it to generate the design.
The work of Ruiz was generalized by Martinova [52] who used the same idea to
show that there is a (K, F')-design where F' is any linear forest on n edges.

3. (G, % )-designs, where each F' € & is a linear forest.

When Tarsi [65] obtained his results on (K}, P, )-designs, he was easily
able to extend the work to address the following more general question:
Given a collection of paths with the property that each has at most n vertices



250 - KATHERINE HEINRICH

and the sum of the lengths is (Z) is there a decomposition of K, into precisely
these paths?

This question (in the case A = 1) was also posed by Slater [64] who called
a graph G path-arboreal if for a multiset {a; : 1 < i < 7} of r positive integers
satisfying 2 < a; < |V (G)| and 3_7_,(a; — 1) = | E(G)|, there exists a
(G, F)-design, where F = {P,,: 1 <i<r}. .

Theorem 3.1. (Tarsi) If (n — 1)\ is even, and {a; : 1 < i < r} is a multiset of
T positive zntegers satisfying 2 < a; <n—2and ) _ 1(az 1) = A(3), then
there exists a (K,  )-design, where & = {P,, : 1 <1 <r}.

Note that this theorem not only imposes conditions on the parity of A and
n but restricts the lengths of the paths. Improvements were obtained by Ng [54],
who considered only the case A = 1 and n odd. His main result allows all but
Hamilton paths, although he did under certain conditions also construct designs
in which some of the paths were Hamiltonian.

Theorem 3.2. (Ng) If n is odd and {a; : 1 <1 < 1} is a multiset of r positive
integers satisfying 2 < a; <n—1and 3 i_ (a; — 1) = (%), then there exists
a (K, F)-design, where F = {P,, 11 < S r}

Truszczynski [67] investigated the question: Is K ,An,n path-arboreal?

Theorem 3.3. (Truszczyrski) If {a; : 1 < i < r} is a multiset of r positive
integers satisfying a; > 2, Z:zl(ai — 1) = Amn, and either
I. m>nanda; <2n,i=1,2,...,r,
2 m=n=2anda; <4,i=1,2,...,7, or
3.m =mn > 2and a; < 2n— 4,5 = 1,2,...,r, then there exists a
(K, F)-design, where F = {P,, : 1< i<r)}.

Fink and Straight [22] define a graph G to be path-perfect if there exists
a (G, F)-design, where | E (G)| = (3) and & = {P,, P3,..., P,}. The first
result they state is not difficult to venfy

Theorem 3.4. The complete graph K,,,n > 2, is path-perfect.

Proof. When n is odd, there is a (K, Cy,)-design (Lucas [S1]) and C,, =
Pri1 U Pygy1,1 < k < 251 When n is even, there is a (K,,, P,)-design
(Theorem2.1)and P, & Py 1 UP,_, 1 <k < 7 — L

In that paper they also claimed that both K, r-1 and K, 2,4 are path-
perfect, and considered the existence od regular path-perfect graphs. Consider-
able progress on the question of path-perfect complete bipartite graphs has been
made independently by Truszczyiiski [67] and Chilakamurri and Hamburger
[16], although only in the case when s is even.
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Theorem 3.5. (Chilakamurri and Hamburger; Truszczyrski) If s > t and s is
even, K 1 is path-perfect if and only if 2st = n (n + 1) for some integer n and
2t > n.

More generally, Zaks and Liu [74] obtained results on decomposing
complete bipartite graphs into r paths, one of each even length from 2 to 2r, and
one of each odd length from 1 to 2r — 1.

Theorem 3.6. (Zaks and Liu) There exists a (Kp n,{P2, P4, ..., Pon})-design
for all n.

Theorem 3.7. (Zaks and Liu) There exists a (Kp n+1,{Ps,Ps,..., Pans1})-
design for all odd n

This latter result was extended by Chilakamurri [15] who showed that these
designs also exist for all even n except n = 2, in which case the design does not
exist.

Theorem 3.8. (Chilakamurri) There exists a (Kp, p+1,{FP3, Ps,. -, Pant1})-
design for all even n except n = 2.

By being less restrictive on the linear forests in # (that is, by saying only
that the subgraphs in the decomposition must be members of a set .# of linear
forest) Lonc [50], Favaron, Lonc and Truszczyrski [21] and Truszczynski [68]
have obtained several results.

Theorem 3.9. (Lonc) If gcd (k,t) = 1, there exists an integer ¢ = c(k,t) so
that for every graph G satisfying § (G) > c, there is a decomposition of G into
paths, each of length k or t.

Theorem 3.10. (Favaron, Lonc and Truszczyriski) If G is a connected graph
and G # K3, then there is a decomposition of G into paths of lengths 2 and 3
if and only if G is not a tree with all vertices of odd degree.

Theorem 3.11. (Truszczyriski) Every sufficiently large <glrraph G satisfying
| E(G)| = 0 (mod k) and A (G) < 2| E (G)| has a decomposition into linear
forests each containing precisely k edges.

Note that these results do not specify the number of linear forests of each
type. The only substantial result we have in which there are at least two types
and the number of each is specified is due to Bermond, Heinrich and Yu [7] and
concerns resolvable designs.

Theorem 3.12. (Bermond, Heinrich and Yu) There is a resolvable decomposition
of K,;\ into s forests each isomorphic to 5 Py and t forests each isomorphic



252 KATHERINE HEINRICH

to 2Py when st # 0, ifand only if n = 0 (mod 2),n = 0 (mod k) and
ks+2t(k—1)=Ak(n—1).

4. Related questions.

In this section we very briefly mention an assortment of somewhat related
questions. We begin with directed path-designs.

The only directed (G, F')-designs we will describe are those in which G
is a symmetric directed graph (that is, G contains the arc (a, b) exactly when it
contains the arc (b, a)). The first result is an immediate corollary to Theorem
2.1.

Theorem 4.1. There exists a (DK, ﬁn)-design when n is even.

The case n odd is considerably more difficult and it was not until 1980
that Tillson [66] constructed examples of such designs. (The question had been
raised by Bermond and Faber [5] who attributed it to E.G. Strauss.)

Theorem 4.2. (Tillson) There exists a (DK, ﬁn)-design when n is odd and
n # 3,5, in which cases the designs do not exist.

The existence of (DK, P)- -designs has not otherwise been considered
except in the case of resolvable (DK, Pk) -designs. Yu [73] has completely
settled the question of their existence provided k # 3,5. (And it is no accident
that we have the same constraint on path length as in the previous theorem.)

Theorem 4.3. (Yu) There exists a resolvable (DK,’),P'k)-design, k # 3,5,
exactly whenn =0 (modk)andn =1 (modk — 1).

Truseczynski [67] also studied directed designs.

Theorem 4.4. (Truszczyrski) If m > n, there exist a (K o Pk)-a’esign if and
onlyif2Zmn =0 (mod k —1),m > [£] and n > [%5} 1]

Heinrich and Nonay [29] considered the question of the existence of
(K2, P,,)-designs with the property that any two of the paths have exactly one
edge in common. Designs for n < 20 (but n # 4,7, in which case the designs
do not exist) were given and recursive constructions described. The construction
was later improved by Horton and Nonay [35] who described a more general
"product” technique. (We remark that such designs were used as a tool in partially
answering a question of Hering [32] who asked for (K2, C,,_)-designs with
this intersection property.) An analogous question can be asked in the directed
case where we ask for (DK, ﬁk)-designs in which any two paths have exactly
one oppositely directed arc in common (see [29]).
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A (G, F)-design is self-complementary if F is a self-complementary graph
(that is, if K|y () has a decomposition into exactly two copies of F') and
if on replacing each copy of F in the (G, F')-design by its complement, the
result is another (G, F')-design. (For a survey of self-complementary graph
decompositions see [59].) The only self-complementary linear forest is the
path Py. Granville, Moisiadis and Rees [24] constructed self-complementary
(K, Py)-designs, showing that they exist exactly whenn =1 (mod 3).

Alspach [3] showed that the collection of all paths P; with vertices from an
n-set can be partitioned into copies of K, if and only if n = 0,1 (mod 4). The
analogous result for directed paths of length 2 was obtained by Heinrich [28].

Horton [34] constructed a (K3, Ps,)-design &/ with an associated
(K2on, nPy)-design 2 with the property that each P, (1-factor) in the decom-
position % has exactly one edge from each of the n paths in the decomposition
of for all values of n satisfying ged (n, 30) = 1.

Li [49] reports on progress made concerning the question of classifying all
graphs with the property that their edges can be decomposed into paths each of
length at least 3 (the question being attributed to W. R. Pulleyblank).

One variant of the ”basic question” stated in Section 1 is obtained by either
allowing some edges of GG notto be used in the decomposition or by requiring that
all edges be used but allowing some to be used more than once. More specifically,
let G and F be graphs and define p (G, F') to be the maximum number of edge-
disjoint copies of F' in G, and ¢ (G, F') to be the minimum number of copies
of F' required to contain every edge of G at least once. The first of these is
called the packing number and the second the covering number. (There have
been many papers on determining these numbers and the reader is referred to
the (now somewhat old) survey articles by Beineke [4] and Harary [25].) The
only results specifically on linear forests are due to Roditty [60, 61, 62] who
determined the packing and coverings numbers in all cases when G = K, and
F' is any linear forest on at most 5 vertices or F' is the path of lenght 5. (He also
obtained results for several other forests.) We note that using some of the results
od Section 2 and the recursive construction technique it is not difficult to show
that p (K, F) = LE(E}Q—)IJ and ¢ (K, F) = [lf((yzg—)l], where F'is any linear
forest on at most 6 vertices. :

M. L. Yu (personal communication) has recently asked the following
question. Colour the edges of P,r41 red and blue so that there are k edges
of each colour, and colour the edges of be red and blue so that there is a red
and a blue copy of K,,. If n(n — 1) =0 (mod 2k), is there a decomposition
of the coloured complete graph into copies of the coloured path?

Finally there has been much study of path numbers, path-covering numbers
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and linear arboricity. The linear arboricity of a graph G is the minimum number
of linear forests required to decompose the graph. Harary [25] conjectured that
for any graph G the linear arboricity is between fﬂzc—)] and fﬂ%] The path
number of G is the minimum number of paths required to partition E (G), and
the path-covering number is the minimum number of paths necessary to cover
the edges of G'. In 1960, Gallai conjectured by Chung [17] that the path-covering
number is also at most [ 2 ]. These questions are of quite a different flavour than
those we have so far considered and for that reason we will leave the reader
to consult appropriate source. (Similar numbers have also been investigated for
directed graphs and tournements.)
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