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KINEMATIC STRUCTURES OF GENERALIZED
HYPERBOLIC SPACES

HELMUT KARZEL

1. Introduction.

Since the genesis of analytic geometry in the 17. century, initiated by
R. Descartes and P. De Fermat, there are two general frames in order to in-
troduce a geometry, a synthetic by assuming certain geometric axioms, and an
analytic by deriving a geometry from a suitable algebraic structure. Both frames
bear possibilities to extend the notion of a certain class of geometries by omit-
ting certain axiomatic assumptions or by taking a more comprehensive class of
algebraic structures. _
In this century the notion “absolute plane” was heavily extended mainly by
grouptheoretical systems of axioms basing on the elementary concept of reflec-
tions (cf. e.g. [1], [5], [12], [151). It is known that the group B of proper motions
of any absolute plane Y can be turned into a kinematic space, i.e. B can be
provided with an incidence structure & such that (B, &) is a (linear) incidence
space with the properties (cf. [13], [5], [6]):

1. VaeB, VXe®:aX, Xae®
2. VX e ® with 1 € X, X is a subgroup of B.

Then the set § := {X € & | 1 € X} forms a kinematic fibration (= partition) of
the group B, i.e. § is a set of proper subgroups of B with
(F1) Ug = B.
(F2) VX, YeFwithX #Y: XNY = {1},
(F3) VXegF, VbeB:bXbv leg.
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(If § fulfills (F1), (F3) and the weaker assumption
(F2') There is a subgroup D of B such that: VX, Y € F with X ZY:XNY =D
then § is called a kinematic cover).

The kinematic space (B, &) is completely determined by the kinematic fibration
5, since ® = {aF | F€F, a € B}.

In the case of an absolute plane 4 = (/A, £,=) (/A resp. P denotes the set of
points resp. lines and = the congruence relation) the stabilizer B, of any point
p € /A is a commutative subgroup of B and the set §’ := {B, | pe /A} of all
stabilizers has the properties (F2) and (F3). § can be extended to a kinematic
fibration ¥ of the motion group B. Each absolute plane {{ can be embedded into its
kinematic space by considering the boundle space of apoint a € B, in particular of
the point 1 € B. For this particular case, themap o : /A = F = &(1);p — B, is
an injection where for each line L € £, «(L) consists of lines of & which contam
1 and are contained in a plane of the kinematic space (B, &). Then the kinematic
space is a very useful tool for the foundation of 4, i.e. for the construction of the
coordinate field H of {{, the embedding of {{ into the projective plane over H and
the construction of the quadratic form, which describes the congruence in 4l (cf.
[5]). Then it turns out that B is a subgroup of one of the following ”"maximal”
kinematic spaces, which are derivable from a kinematic algebra (A, H), that is
a unitary associative algebra with the property a? € H + oH for all a € A: if
U denotes the set of all units of A, then € := {UNH[a] | ac A\ H}isa
kinematic cover of U with D = H' := H \ {0}, and so the group G := U/H’

- has the kinematic fibration §,, := {C/ H |Ce Qi} If B is a subgroup of G,

thenF={FNB|FeF,}

The kinematic algebras (A, H), which are connected with absolute planes, have
all the rank [A : H] = 4 and belong to one of the classes:

Let J:= {z€ A\H | 2?2 €H} ifcharH # 2, J := {z € A | z? ¢ H} if
charH =2 and N := {z € A | 22 = 0}. Then (cf. [8] p. 475 f): ,

ITa.3) A/Rad Aisafield. Rad A # {0} and (Rad A)? = {0} (if {l is an euclidean
plane or more general a rectangular plane).

IIb.3) A/RadA = H® H, Rad A # {0} and (Rad A)? = {0} (if U is a linear
Minkowski plane).

Illa.c) Rad A = {0} and (A, H) is a quaternion field (if { is an elliptic plane).

IIIb.cv) Rad A = {0} and A = 9, (H) is the algebra of all 2 x 2 matrices over
H (if 4 is an hyperbolic plane).

For the kinamatic algebras of class IIlb.o)) we have U = GL (2,H) and
G = PGL(2,H).

If (K,+,-) is any commutative field, then (PGL (2,K), F.) is called the
hyperbolic kinematic space over K and §,, the hyperbolic kinematic fibration
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over K.

All generalized absolute planes 4l split in two classes, in regular ones and in so
called ”Lotkerngeometries” . The corresponding coordinate field H of 4 has in
the first case a characteristic # 2, and in the second case the characteristic = 2.
If we denote by I the set of all involutions of B, then for a regular absolute plane
U = (/A, £,=) we have |B, NI| = 1 for each point p € /A. Therefore we
observe: :

Let i = (/A, £,=) be a regular absolute plane and B the group of all proper
motions of Y. Then B can be turned in a kinematic space (B, &, -) such that:

a) /A can be considered as a subset of B, hence /A C B and the incidence
structure £ of 4 is induced as trace structure by the incidence structure @ of the
kinematic space.

b) Ifforany b€B,b: B — B;z — brb~1 denotes the inner automorphism,
then b(/A) = /A, b|/A is amotion of Ll and {b|/A | b€ B} is the motion group
B of 4.

These observations lead H. Hotje [4] to the notion of a kinematic group
(G,8,.,T),ie. :

1. (G,®,-) is a kinematic space and T C G.

2. VgeG:g(T)=T.

3. G=Glr.

At present the following question seems to be natural:

(x) Is there also a fine way to connect a spatial absolute geometry with a
kinematic space?

In order to tackle this problem it seems necessary to extend Hotjes notion of a

kinematic group: ’

A quintuple (G, ®,-,0,T) is called a generalized kinematic group, if:

1. (G, ®,") is a kinematic space and T C G.

2. 0:G — symG; g — g" is a monomorphism.

3. VgeG:g"9(T) =T.

4. If GP := {g"” | g€ G} then G = G |1 = {¢"1 | g© € GP}.

Now we can give () a more precise form:

(#+) Leti = (/A, £,=) be an absolute space and let B be a motion group of 4.
Can B be turned into a generalized kinematic group (B, &,-,0, /A) such
that for each b € B, bV | /A is a motion of 4?

Here we will consider this problem for a 3-dimensional hyperbolic space. For

this purpose we will present a nice algebraic description of the hyperbolic space
which allows a natural generalization of the notion “hyperbolic space”. Since
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the Minkowski space time world is closely related to the hyperbolic space, we
obtain also an elegant representation of this structure and also a possibility to
generalize the notion Minkowski-world. -

Our analytic description of the classical hyperbolic space starts from the algebra
M := M22(C) of all 2 x 2-matrices where the coefficients are complex numbers
and the set §) of all Hermitian matrices of 901. Here we have the involutions ~, T, *
and ~ defined by '

K - (am) AT - <a/11 0,21) A* = (K)T ;A: — ( a92 —alg)

a12 Q92 —a21 aii

where the conjugation ~ is an automorphism, and 7, * and ~ are antiauto-
morphisms of (90, +,-). The points of the classical hyperbolic space can be
identified with the set H+ := {X €6 | X+ X > 0, XX = 1}, and then the
congruence is given by ”(A,B) = (C,D) : «—= AB+ BA = CD + DC” for
A,B,C,D, € 9. The group B} of all proper resp. By, of all motions is given
by B = SL(2,0)° = PSL(2,C) = PGL(2,C) resp. B, = Bf U0 B}),
where SL(2,C)" consists of all maps AP : §]T — 671; X - AXA* with
A € SL(2,C). This shows that B} becomes via the hyperbolic kinematic fi-
bration §,, over C the hyperbolic kinematic space (B,’:, ®, ) over C and that
(Bif,®,.,0,%7 ") is a generalized kinematic group.

2. Properties of the algebra of 2 x 2-matrices.

In this paper let:
K be a commutative field with char (K) # 2 such that

1. K has an involutory automorphism —

2. H := Fix (—) has a half order P, i.e. P is a subgroup of the multiplicative
group (H',-) of index (H' : P) = 2 where H := H \ {0}; P is called an order
or a positive-domain if further more P + P C P; we set K' := K \ {0} and
H = {2z |z€K'}.

3. i€ K\ Hsuchthat ;> € H (if u € K\ H, then ¢ = u — @ is such an element).

M = M (K) := {Xz (xll :I:12> |$ij€K}.

T21 T22
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E := Ej; 4+ E22. K and KE resp. H and HE shall be identified.
For X,Y € 9 let:

S T -z T x
L= 22 12 : XT .— 11 21
—T921 11 T12 T22
- T T =T T T
T .= _11 _12 . X*=X = _11 _21 .
21 T12 T2 22

ﬁ::Fix(*)z{XEEmIX*=X}={<€ >]£,n€H xeK}

r n
Y2 T2
Q(X,Y) = (XYA+ YZ() if XX, YY #0
XX-YY

Each half-order P contains the set H? := {A? | A\e H\ {0}} of squares of the
field H. We will consider the following particular cases:

P is an order with —;2 € P

P is an order with —¢* € P and 1 + H? ¢ H®, i.e. H is a pythagorean
field.

P=H%and 1 +H® c H®, ie Hisan euclidean field.

H=R,P=R®, hence K = C.

(2.1) ~ is an involutory antiautomorphism of (90, +, ) with Fix~ = K and
we have:

a) det : M — K; X — XXlsaquadratlcformandf Mx M - K;
(X,Y) —» XY + YX the correspondlng symmetric bilinear form.

b) For X e M, TrX = X + X is the trace of the matrix X.

) Ji=Fix(—) ={XeM|X+X=0}={XeM\K|X?cK}isa
3-dimensional vector subspace of (91, K).

d) In the metric vector space (90, K, det) we have 91 = K 1 J, hence —~ is
a reflection with the axis L and the direction J and so det(~) = —1.

e) For X,Y,U € M with XX, YY 1840} # 0, o(UX,UY)= o (XU,YU)=

0 (X,Y).

(2.2) (9M), H is an eight-dimensional vector space and * an involutory antiauto-
morphism of (9, +, -) and a linear map of (9, H) such that:

a) The Hermitian-matrices $) := Fix* = {(i 77) Ié,nEH :L'EK}

and the skew-Hermitian-matrices Fix (—x) = 4 - § are four-dimensional vector
subspace of (9, H).
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b) ~o% =x0 ", hence detX = XX € H for all XeHn, e det : 5 — H;
X — XX is a quadratic form of the vector space (), H). :

¢) In the metric vector space (§),H,det), § = HL(JN$H) and ~ is a
reflection with axis H and direction (JN §). For X = ¢ +re H with §; € H

and
&2 w)
= | 22 eJNG
£ (33 —&2

we have detX = XX = €2 4+ F = &2 — 12 = €2 — (€2 + 27).

d) If Pisanorderof (H, +, -) such that —i? € P, then det is positive definite on
H, negative definiteon JN$H and for X, Y € § withdet X, detY, Tr X, TrY € P
we have det (X +Y) € P.

Proof. d)LCtX= 51 +;’Y =m +0€~6 with 6% _‘;27 77% _027 617 m EP,
hence det (X +7Y) = (&1 + n1)% — (x + p)2. Clearly, if r = 0 or yy = 0, then

det (X +7Y)€P.Soletg,n # 0, i.e. we may form A := x; +02; € H.

Byc) (r—Ap)? =12 = A(rp+12) + A2n% =1 — 20202 + A%p? =12 — A%p? €
PU{0}, hence 4r2y2 — (xh+yr)? € PU{0}, i.e. (xp+9r)? < 4r’y?  (Schwarz
inequality). :

By our assumptions (rp + nr)? < 41?92 < 4€2n2 ie. |ph + nx| < 26171
Consequently det (X +Y) = £} —® + 0§ — 92 4 26, — (x9 + vr) €P.

In dependence of P we split §) in the following subsets:
H° = {X € 9H | det(X) = O} (set of light like vectors)
Ht = {X €9 | det(X) € P}  (set of time like vectors)
H™:={XeH|dtXeH\ (PU{0})} (setof space like vectors)
and further $7* in
Htt = {X e ot | Tr(X) € P} (future-cone)
Ot = {XenHt | Tr(X) ¢ PU{0}} (past-cone)
Ht0 = X e nt | TTI(X) = 0}

23)a) H9° =9 H -9t =5, H - H~ = 9~

b) P.HT+ = f++, P.Ht— =+, (H \P) -Htt =5t and (H \P) .
Ht— =Htt.

c) HT° =0 <« VéEecHVzeK: (£2+27)¢ —P

d) IfPisanorder with —i2 € P,then 7 = HTtun*—, ott+o++ c o+,
P-Htt=H1+ (-P)- 9Tt =97~ and INH C H~ U {0}.
Proof. d)LetX,Y € §1+. Then Tr (X+Y) = Tr (X)+Tr(Y) € P+P C Pand
by (2.2)d),det (X+Y) € P,then X+Y € HTT.For A€ P, Tr (AX) = A Tr(X) €
P-P CPanddet(A\X) = )?-detXeP-P CP,hence P- 91+ c H*+.
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A permutation ¢ of M resp. §) is called a similarity if there is a A € K resp.
A € H' such that det (¢(X)) = X - detX for all X € M resp. X € §, and a
similarity is called an isometry if A = 1.

For AcMtlet AW : 9N — M : X — AXA* and let M7 := {A° | Aem}.

(2.4) Each map ¢ € M° U {~, T, —id} is H-linear with o($) C $ and for
the restriction 3 := o|g4 onto the metric resp. half-ordered metric vector space
(%), H, det) resp. (£, H, det, P) we have:

a) =] $isareflection in the line H with the direction E+ = H+ = JN §H,
detIB = _]-’ /B(ﬁ-'_) = ~6+9 6(-6_‘) = ﬁ—v B(ﬁ++) = ﬁ++.

b) B =T|H =" |9 is areflection in the hyperplane Fix § = HE;; + HE5, +
H<E12 +E21) with the direction Hi(Elg — Egl), det = —1 and B(ﬁ+) = f)+
B(H™) = 57, B(HTF) = 5+,

¢) B = —id is the reflection in {0} with det8 =1, B(HT) = 97, B(H™) =
H” and f(HTT) =H1" = -1¢P,f(H™) =HTF = —1¢P,

d) For A € GL(2,K), A" € GL(4,K) and 8 = AP|$ is a similarity of
(%, H, det) with the factor A := det A - detA € H, i.e. det (8(X)) = A - detX.
Further det3 = X2, ie. 3 is an isometry if A = 1, and (1) = H+,
BHT)=9H" <= AeP,pHT) =H" <= A¢P.IfPisan order
with —i2 € P, then B(HT1) = Ht+. |

e) -In the cases a) and b) (3 is an improper, and in case c) a proper isometry.

f) VAL BeEM : A" o B = (AB)",ie. O: MM — End (H,H); A - AT is
an homomorphism with GL(2,K)” < GL($,H), the restriction ®|GL(2, K)
has the kernel K := {z €K | 2Z = 1}, and so GL(2,K)° = GL(2,K) /K.

Proof of the last part of d): We have E € T+, B(E) = AA* and Tr (AA*) =
11011 + a12Q12 + az1@21 + az2a22 € P since —ie P, hence ﬁ(E) € Ht* and
B(—E)eHT™.By AeP, B(H1T) C HT. Assume CeS(HTH)NHT~. Then
there are o,y € P such that Tr (¢ AA* + vC) = oTr (AA*) +~Tr (C) =0, i.e.
by (2.3) &) (aAA* +40) C 5~ U{0}. But §71(C), -X(AA*) = E€H'*,
hence by (2.3)d) v(871(C))+aE € H7F,and soyC+aAA* C B(H1T) C fo+
a contradiction. Consequently 3($*+) C ™%, and also 571 (H++) c HT+,
ie. B(HTT) = HtF.

By [11] (2.9) and [7] (6.4),(6.5) we have:

(2.5) Let X resp. Xy denote the group of all similarities of (9, K, det) resp.
(9, H, det) and B resp. By the group of all isometries of (9, K, det) resp.
(£, H, det).

Further let K* := {2 €K | 22€ H®} and GL(2,K*) := {X e GL(2,K) |
det X € K*}. Then
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a) ¥ =GL(2,K)¢ 0 GL(2,K), U (~o GL(2,K), 0 GL(2,K),).

b) Xy X X, i={0€l | oco*x = %00} = L, U (~o X,) where
Y. ={XoAP | AeGL(2,K), AeH'}.

©) B="*T U (co*T) U ((J1)eo TT) U (~o (J1)¢ o *T) where *T :=
{Ag o B, | det AB = 1} and J; := Eq1; — Eo».

d) By = B, :=BNX, =Bl U (oB}) where Bf :== {N o0 AP | A€
GL(2,K*),AeH : \%detA -detA = 1}.

a) If —1 ¢ P, then B contains the subgroup Bf* := {N 0 A" | A €
GL(2,K*), A€ P : A% = (detA - detA) = 1} of index 2 which is
isomorphic with PGL(2,K*) := GL(2,K*)/K" and we have Bt = Bf* U
((=1) o Bf). |

B) If -1 ¢ P and P = H® then B}t = {A" | A€ SL(2,K)}.

By (2.4) and (2.5) we have:

(26)Let X o AP e X!, 0:= X 0 AU andIT :=~0 X\ o AY. Then:

a) o(Ht) = HT = o(H7) = H = 1(Hh) = Ht =
det A - det A e P. :

b) o(HT)=H" <> 7(HT) =H" <= detA.detA ¢P.

¢) c€By <= 7€B, = o(HT) =7(H1) =HT.

Supplement: An analytic description of the hyperbolic plane and its kine-
matic spaces.

Let H be an euclidean field, let < be the order relation on H defined by:
r<y:<> y—zcH®? andlet M := My, (H). To the 4-dimensional vector
space (91, H) the corresponding 3-dimensional projective space II(O, H) is
given by:

Let M := M\ {0}, : M* — M>/H'; X — H'X the canonical map and
let P, be the set of all 2-dimensional vector subspaces of (90, H), then 9% /H’
is the set of points and &, := {¢(L \ {0}) | L € £5} the set of lines. If

M = {XeM|XX >0} , M :={XeMm*|XX =0},
M= {XeM|XX <0} , °M:={XeM*|X+X=0},
M = MAME, °M® :=° MAM°, °M™ :=° MNM™,

then each of these subsets is homogeneneous, X = M+ U M° U M~ and
°M = Mt U 9M° U° M~ are disjoint unions, M+ UM~ = GL(2, H) and
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M+ is a subgroup of index 2 in GL(2, H). Consequently the set % /H' of
points of the projective space splits into the disjoint subsets:

WUJH = () U () U p(97) = PGL(2,H) U p(a)

where ¢©(9M°) is a ruled quadric. (°9N) is a projective subplane of TI(901, H)
which has the disjoint decomposition:

P(°I) = o(°MT) U p(°M°) U p(°M"~)

where (°IN°) = p(IM°) N (°MN), the intersection of the ruled quadric and
the projective plane is an ellipse.

The hyperbolic plane {4 = {(H) = (/A, £, =, ) over the euclidean field H is
givenby: /A 1= p(°ONT) is the set of points, £ := p(°9M~) is the set of lines.
A point p(A) € /A and a line p(B) € £ are incident iff AB + BA = 0, the
congruence of two pairs of points (p(A), (B)), (¢(C), (D)) € /A x /A is
defined by (p(A),p(B)) = (¢(C), (D)) : <= o(A,B) = 0(C, D) and the
order structure is given by:

Let o(A), ©(B),¢(C) € /A be three distinct collinear points. Then there are

o, € H such that C = oA + (B.

We set R A
_ [ -1lifaB(AB+BA) >0
(#(C) | ¢(A),0(B)) := { 1if aB(AB +BA) < 0

(cf. [12] §29) and say that o(C) lies berween @(A),p(B), if (p(C) |

QO(A)>‘10(B)) = —1. .
For A € °™* and B € GL(2,H) we have:

BAB™! + BAB-! = BAB~! + B-1AB = B(A + A)B~! = BOB~! = ¢
and
BAB™!BAB-! = BAB~!B~1AB = B(B~!B-1)AAB = A& > 0.

Consequently °9* is an invariant subset of GL(2, H) and so /A = Q(°IF) is
invariant in PGL(2, H). Moreover /A consists of involutions since A + A =
implies A = —Aandso A? = —AA € H. The group of proper resp. of all

motions of the hyperbolic plane il is given by B := (9MM*) resp. PGL(2, H)
and the motions are the inner automorphisms of PG L(2, H) restricted onto /A.
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Since B and G := PG L(2, H) are subsets of the point set of the projective space
II(901, H) they can be turned in linear incidence spaces:

={XNB|Xe®, :|XNB| 2},

Bc = {XNG|Xe&,: |XNG| <2}

Then (B, ®g, ) and (PGL(2,H, B¢, -) are kinematic spaces of the hyperbolic
plane {{ and (B, ®g,:, /A) resp. (PGL(2,H, &¢, -, /A) are kinematic groups.

Remarks.

1. For each euclidean field H,{(H) is a hyperbolic plane in the sense of
[12] §26, and conversely, to each such hyperbolic plane 4 there is an uniquely
determined euclidean field H such that {{(H) = 4. For H = R we obtain the

classical hyperbolic plane (cf. [12] §30).
2. The notion "hyperbolic plane” can be generalized in many steps by taking

for H fields of larger classes of fileds.
3. With the function g the congruence relation = of { can be extended onto

the kinematic spaces (B, ®g, ) and (PGL(2,H), &g, -).

3. Generalized Minkowski-world, their Lorentz-groups and their kinematic
structures.

The 4-dimensional half-ordered metric vector space (£, H, det P) shall be
provided with the following structures:
1. The elements of §) are called events.
2. On $ we define:
a) the causality relation: A - B: <= B - AefHtt,
b) the signal relation: A - B: <= B—-AeH°t :={XeH° | TrXeP},
c) the congruence relation: (A,B) = (C,D) : <= det(A - B) =
det (C — D).
3. Theelementsof & := {A+HB | A,B€$), B # 0} are called lines. They
split in the three classes &°, &1, &~ whether Be $°, Be Ht orBe H~.
Then ($, ®, —, -, =) is called a generalized Minkowski-world and we have:

(3.1)If H =R, hence K = C, then ($), &, —, -, =) is the classical Minkowski
space time world.

(m(A),7(B))

(3.2) All line preserving permutations 7 of § with ( =
M($,®,=) and

A,B)
for all A,B € $ form the generalized Lorentz-group M =
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M is the semidirect product M = T x L, where T is the normal subgroup
consisting of all translations AT : § — §; X — A+ X with A € § and
L:={ceM|o(0) =0} =By =B, =B U (~oB}) (cf. (2.5) b)).

By (2.5) L = Bg consists of linear maps and for each ¢ € By either deto = 1
ordetoc = —1by (24), 0(H°) =H°, oc(HT)=HT ando(H~) = H~.

In the Lorentz-group M we will consider the following subgroups:

Lt :={oc€lL|detec =1} =Bt and M* := T x L+,

(We have (M : MT) = (L : L") = 2 and L™ = B} by (2.4) a) and (2.5))

TL = {o €L | o(Htt) = HTT}, and ™M := T x *L the group of
all orthochronous Lorentz-transformations which are also characterized by
preserving the causality relation ”—”.

'L :=% L U (~id) o* L and ‘M := T x 'L the group of all maps which either
preserve or reserve the causality relation.

(33)If tLT ;=T LNL™, then:

a) 'L =* Lt U (~ot L*) (by (24) a), and 'L :=* LT U (~ot L1) U
((-id) o L*) U (~o (-id) o+ L),

b) If P is an order with —i? € P, then TLt = B+ by (2.3) d), (2.4) d) and
(2.5) d), hence 'L = L.

c) if (H,+,) is a euclidean field, then TL* = {AP | A € SL(2,K)} =
SL(2,K).

d) For H =R, TL* = SL(2,C) is the classical group of all homogeneous,
proper and orthochronous Lorentz-transformations.

Problems: Determine *L* for the cases:
i) P is an order but —i% ¢ P.
ii) P is a halforder but not an order for —4% € P? and for —4% ¢ P2,

(3.4) The following statements are equivalent:

a) The causality relation ”’—” is antisymmetric and transitive
b) HTt +HTt C 55++
¢) P is an order with —i% € P.

Proof. a) < Db): Since there are A,Be$H with A - B,B-—AecnHtt, ie.
9Tt #£ . Let A,BeHT.Then0 — A and A — A+B, and by the transitivity
of >»”"wehave 0 - A+ B,ie. A+ BepHtt,ie HTT + Ht+ c pH+t.

b) = ¢): Let
— (@ ¢ ++
A_-<E ﬁ>efo ,
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hence o + 3 € P. Since by assumption A + A € $*+ we have 2(a+pB)eP,
and so 2 € P since (P, -) is a group. But 2 € P implies

P:{(S g) l/\EP} entt,

consequently P + P C H** + H++ < §*+. For A, 1 € P we obtain

Atp 0 ++
< 0 /\—i—u) cH™,

hence 2(X + 1) € P, thus A 4+ 1 € P, and so P is an order of (H, +, ). Suppose
i €P.Let o, B € H such that 82 > o > 2. Then

A= (——C,YBZ' _’i@) entt.

2

. o " B 0 ++
For p € P with 1 < and B := u we have B € but

i
a+ (32 0
det (A + B) = p(a+ ?) — ai? < @i? — @i = 0, hence A + B ¢ §5++.
c) = a). Since —1 ¢ P, "—" is antisymmetric and since 2 € P, 0 — E.
Nowlet A 5 Band B — C,ie. X :=B—A,Y := C - Be §+, ie.
detX,detY, TrX,TrY € P. By (22) d) det (X + Y) € P and Tr (X+Y) =
TrX+TrYEP+PCP,ie. X+Y=C-AcHtt, hence A — C.

By ¥ : Lt — PGL(2,Kt); A 0 A® 5 KA a map is defined (for
Ao AR = 4 oBY = (A\p7l) = BUAD-L = (BA™H)P =
KA = KB) which is a homomorphism with the kernel {id. — id}. Since
the group PGL(2,K™") is a subgroup of PGL(2,K) and since PGL(2,K)
is the hyperbolic kinematic space over (K, +,-) with respect to the fibration
§ = {¢((KE + KA) n GL(2,K)) | A €J*} where ¢ : MMX — M*/K';
X — K'X, § induces a kinematic fibration § := {F N PGL(2,K*) | F€ §}
for PGL(2,K*) and therefore we can provide the Lorentz-group LT with the
kinematic cover € := {¢)"}(F) | F€ §'}. If —1 ¢ P, then B} * is a subgroup
of L* of index 2 and the restriction | g+ is an isomorphism between B} * and
PGL(2,K*),i.e. B}t can be turned into a kinematic space.

This gives us the result:
(3.5) The proper homogeneus Lorentz-group Lt = B} has a kinematic cover €
with D = {id, —id} and we have:
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a) L*/D = PGL(2,K™") has a kinematic fibration.

b) If -1 ¢ P, then L*t/D & B}* and TL+ < BF+.

c) If P an order with —? € P, hence *L* = B}+, then the homogeneus
orthochronous Lorentz group *L™* has the kinematic fibration §'.

d) If P is an order with —i% € H® and 1 + H® ¢ H®, then L+ =
PGL(2,K and *L* can be turned into the hyperbolic kinematic space over
(K, +,).

e) For the classical case H = R, the orthochronous Lorentz group TLt =
PGL(2,C) = SL(2,C) has the hyperbolic kinematic fibration F,,, of C.

4. Hyperbolic and generalized hyperbolic spaces.

In this section we use the same notations as in §2 and we will assume that

H has a halforder P.
To the 4-dimensional vector space (), H) we consider the corresponding 3-
dimensional projective space I1($, H) (cf. e.g. [12] p. 61):
Let55>< :=H\{0}and ¢ : H* — H*/H'; X — H - X the canonical map; then

$* /H' is the set of points and if B, denotes the set of all 2-dimensional vector
subspaces of (£, H), then {¢(L*) | L € B;} is the set of lines of II(£), H) and
the incidence is the inclusion. ¢(53°%) is not a ruled quadric. The quadratic form
"det” turns I1($), H) in a projective metric space by defining on the set of points
which do not lay on the quadratic ¢($3°%), the following congruence relation:

(HA,H'B) = (H'C,H'D) : <= (A,B) = o(C, D).

From now on if A € $)* we denote by A also the point H' A of I1(9H, H).
The halforder P of (H,+,-) induces a halforder o of the prOJectlve space
I1(53, H) by (cf. [14] or [10] p.130):

1. For A€ H* let sgn \ := llf)\ePandsgn/\——llf)\e_fP

2. Let $® = {(A,B,C,D) € $** | HA, HB, HC, HD are distinct
and HA + HB = HC + HD}. Then to each (A B,C,D) € ™ there are
Y1,7Y2,01,02 € H Wlth C =mAeyB,D = §A + §B, and DV(A B |
C,D) := 167 627v5 ¢ is the crossratio.

3. The separation function o : H4 — {1,-1}; -A,B,C,D) — [A,B |
C,D] := sgn DV(A,B | C,D) is the halforder of II(£, H). In this way we
obtain a halfordered projective metric space (II($, H), =, a).

By the hyperbolic-derivation 1(), H, det, P) we understand the trace structure
on Y := p(H*), ie.: YV is the set of points. & := {P(LNHT) | Le £, :
IL N .?j+| > 2} is the set of lines, = and « are restricted on . The triple
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(B, B, =, ) is also called a generalized hyperbolic space and the points of the
quadratic (($)°) the ends of the hyperbolic space. A line p(LNH*) € & is said
to be incident with an end p(A) € p($°%), if A € L. This gives us the following
subdivision of &:.

Aline p(A) € & belongs to B resp. & resp. B, if p(A) is incident with no resp.
one resp. two ends. For each A € 9%, A+ := {H'X | X e H* : AX = ——XK}
is a plane of II(%), H) and to each plane ¢ of II($), H) there is an A € >
with € = AL, Therefore there are the three classes of planes A+ of II($), H)
depending whether A € $+, A€ $5° or A € $, and for the set & of planes of
the hyperbolic space we have € = {p(AL N H*) | A e H* : AL N Ht # 0).
Also the set € splits into the subsets ¢+, €, ¢~

The function x : $ — H/ H® : X 5 HOXX gives us a further subdivision of
the sets of points and of planes of the projective space II($), H) by: A ~ B <=
X(A) = x(B). For each A € $* we have:

Aldsanend <= x(A) =0 <= A" isatangent plane of ©($°%) in A.
The pair (p(H*), ®) is an incidence space (cf. [12] p.11) if each line of &
contains at least two points. |

We have:

(4.1) a) (P := p(H1), &) is an incidence space if H # Zs.

b) & =ByUB; U®B,.

¢) If G:=p(LNHT)e B, thenL C HTUH°, ie. ¢(LN$HT) contains up to
the end (L™ N $°) all points of the projective line (L *); hence |G| = 2|P|.

d) Any two distinct ends are incident with exactly one line.

e) If G € &,, then |G| = |P|.

f) If G € &, then |G| = |P| + 1. :
Proof. Let L € £; such that LN H* # 0§, G = (L N H*) and let
A€eLnNHt. Then A ¢ AL and L N AL # {0}. For Be L N AL with
B # 0,L = HA + HB. We set @ := AA, b := BB and remark ¢ € P.
Then (L) \ ¢(A) = {¢(AA 4+ B) | A€ H} and |

(%) det (AA 4+ B) = N2AA + BB = A\2q +b
hence
() lo(LNHT) =1+ |{AeHAa+beP}|.

Ifb=0then Ge &; and L C H1 U $° which proves c).
For b # 0, G is incident with no ends if —ab ¢ H(®), and with two ends if

—ab € H®), With this b) is proved.



KINEMATIC STRUCTURES OF GENERALIZED. . . 273

Now let us assume |G| = 1. This implies b # 0; b ¢ P and {\ € H |
Ma+beP} = 0, hence H?a + b ¢ b P U {0} which is equivalent with
H®@abt +1 ¢ P U {0}. Since [H| > 3, |H®| > 1, and therefore we may
assume b # —a. Then a=2b%ab~! + 1 € P hence b+ a C aP = P which is a
contradiction. This shows a).

Inordertoproved)ande)let A, B € $°% withp(A) # o(B)and L := HA+HB.
Then det (AA + B) = A(AB 4+ BA), ic. [LN$HT| # 0 if AB+ BA # 0. But
AB+BA =0 ‘would imply the contradiction L C $°. Since AB + BA # 0 we
may assume AB +BA = 1 and then we see directly: P(AA+B)€p(HT) —

A€EP. )

f) Here a € P and —ab ¢ H®, hence M\2a +be P <= X202 + ab € P.
2

Since H® C P we have for each \ € H of the form \ = ~ 2— K with peH,
ua
’ b — 2 bh— 2 ’
A2a2+ab€H(2)CP.Ifa b _®7Y withz/yé,u,theny_—___a_b_
2ua 2va , L

Therefore by (*x)
1.
1+|P| =1+ 5[0 < |G| < 1+ H],

and if [H| ¢ N, then |P| = |[H|, and so |G| = 1 + |P|. If ¢ := |H| € N, then
P = H® Hence |

1 1
Gl=1+5(@-1)=3(@+1)=1+|P|.

Remarks: 1. Let Ly := {Le £y |L ¢ $°} andletx: £5 — H'/H® U {0}
be the following map: For L € £ let A € L \ % B € AL N L% and
x(L) = AABB - H®. Then x is independent of the choice of A € L \ $°
and Be€ AL NL*. For G := p(L N H1) € $ we have:

Ge®y, <= x(L)#(-1)H®
Ged; = x(L)=0
Ged, <= x(L)=(-1)H®

2. B2 #0: 81 #0 < H N(=P) # 0 (in the finite case H' = H, and so
®; # 0; for H = Q there are examples with &; = ) and such with &; # () :

(i) Let K = Q(¢), and P be a subgroup of (Q’, -) of index 2 such that —1 ¢ P
resp. —1 € P. Then in the first case &; = (), in the second &; # (.
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(i) For K = Q(v2), H = {¢? — 2% | 2,y € Q}, and s0 —1 € H, hence
—-1eH' N (-P).
Consequently by any choice of P we have here &, # ().
3. & #0 = ILe Ly :LNHt #Pandx(L) ¢ (~1)H?. Since E€ 5+
and '

EL={X65§I|‘X+X=6}= {(g _x€> lfeH,xeK}

we have‘fgr‘ each L = HE = HX € P, with X € B+, LN §* # () and
x(L) = XX - H® = —(£2 + zz)H®. This shows:

‘60(1)#0 < J{eH, mEK:§2+x§¢H(2).

If H is finite, hence H' = H, then &, # (). For H = R, hence K = C, and
P = R(® we have always ¢2 + 27 € R®, and so B, = §.

By a hiperbolic space we understand a quadrupel (B, &, a, =) such that:

1. (B, 8,q, =) is an absolute space in the sense of [9] §1.
2. Each plane E of (P, ®) is with respect to the trace structures of B, a and
= a hyperbolic plane in the sense of [12] §26. ’

We have the following representation theorem:

(4.2) a)If (H, +, ) is an euclidean field, then n($, H, det, P) is a 3-dimendsional
hyperbolic space. ' ' ’

b) If (B, &, a, =) is a 3-dimensional hyperbolic space, then there is exactly
one euclidean field (H, +, -) such that (B, &, o, =) = 7(H, H, det, P).

Remarks. 1. Each euclidean field (H, +, -) has besides the uniquely determined
order P = H(®), exactly one quadratic field extension (K, +,-), so that the
involutory H- automorphism of (K,+,-) is fixed and with this the set of
Hermitian matrices §3. ‘

2. n($HH, det, P) is a continuous hyperbolic space (cf. [12] §30) if and only if
H =R, thus K = C and P = R®,
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5. The kinematic structure of a hyperbolic space.

Let Bj, be the motion group of the generalized hyperbolic space n($), H, det, P),
i.e. the set of all permutations 7 of the point set P = §+ /H’ which preserve the
incidence sturcture &, the halforder o and for which (7r(X) W(Y)) = (X,Y)
is valid for all X,Y € 7. Each ¢ = X o AY € H o GL(2,K)? =
Y, or ¢ = ~induces by ¢/ : H*/H — $*/H; HX — HO’(X) a
collineation of the projective space II($), H) which preserves o (for by (2.1)
e) Q(H'U(X),H'U(Y)) = p(AXA*,AYA*) = 0(X,Y) = Q(H’X,H'Y)), the
crossatio (since p is linear!) and so the separation function a. For p = A" 0 A"
we have o/ = (A"Y and by (2.6) o/ (*p) = P if det A - det A € P. Hence:

(5.1) Let GL(2,K,P) := {A€ GL(2,K) | det A - det A € P}. Then

GL(2,K,P) — — (GL(2,K,P))* -+ B
a) D : {A-——)AD (AD)/ - .h,

is a homomorphism with the kernel K', i.e;
B} := ®(GL(2,K,P)) & PGL(2,K ,P) = GL(2 K P)/K'E'.

(The elements of B+ are induced by linear maps o of (YJ H) with deto € H(z)
(cf. (2.4) d) and are called proper motions). - '

b) ~' € By, with det~5 = —1 (cf.(2.4) e) is a reflection in the point <p(E) and
if E-N$H1 # 0 then~ fixes the plane p(E* N $H7) pointwise and ~ ¢ Bf.

¢) B, =Bj U (~0oB}).
This theorem tells us that the proper motion group B of the generalized
hyperbolic space (), H, det, P) can also be turned into a kmematlc space which
is 1somorphlc to the kmematlc space (PGL(2,KP),§") where the fibration

= {FNPGL(2,K,P) | F € §} is also induced by the hyperbolic ﬁbratlon

Sm over (K, +,-).
By our definitions GL(2,K*) = GL(2,K,H®) := {X € GL(2, K) |
detX - detX € H®} and since for each half-order P of (H, +, ),H® < p
we have GL(2,KT) < GL(2,K,P). Further GL(2,K,P) = GL(2,K) if and
only if 2Z € P for all z € K'. This gives us the results: o

(5.2) For the group B,‘f of all proper motions of the generalized hyperbolic space
n($, H,det, P) and the Lorentz group *L* of ($, H, det, P) we have :

a) Bf ® PGL(2,K) += VzeK : 2z € P;in this case B has the
hyperbolic kinematic fibration §,, over K. :
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IR

b) If P is an order with —i? € P, then Vz € K',2Z € P, and so B}
PGL(2,K) and tL+ = PGL(2,K,H®).

¢) If P is an order with ~? € P and V2 € K', 2z € H®, then +L+ = B}
PGL(2,K).

d) if n($, H,det, P) is a hyperbolic space, i.e. H?) is an order, then TL+ =
B =~ PGL(2,K).

IR

Embedding: the hyperbolic space as a generalized kinematic group.
For the last part we assume —1 € K(2). We consider the following maps:
UM - M /K'; X—-KX
H—=H*/H; X—-HX _
H/H - M /K'; HX - KX
PO — Map (OM); A — A" = 4,0 (A%),
M /K* - MK x=KX - x®=KX*
P /K" — Map (M*/K'); a— a® :=as0(a

®x © O 3 S

G)r
and remark that with respect to the multiplication the set 2t and so the set
M* /K" are semigroups and also the sets Map () resp. Map(9M=/K’) of
all maps from 9 into 9 resp. M /K" into M* /K" form semigroups under
composition of maps.

(5.3) © is an involutory antiautomorphism, ¥ and O|lgr(2,x) are homomor-
phisms with the kernels K and K respectively and 8| pg L(2,K) 1S a monomor-
phism. Further: '

a) TTlo(H¥) = {X e M | X* e K;X}. ~

b) TTIU(HT) = {XeM* | JaeK : X* = aa" !X, a’XX €P} C
GLGL(2,K).

¢) 7 isaninjection and /A := 70 o($1) ¢ PGL(2,K).

d) VAeGL(2,K) : AD(\I/‘I\I'(ﬁX)) = U~1¥($*) and if H C P then
AR(T1o(HT)) = U1y (g,

e) If H" C P then Vae PGL(2,K) : a® (/A) = /A.
Proof. With + : I — M also © : M* /K" — 9M*/K' is an involutory
antiautomorphism. Since K is the center of (9%, .), ¥ is a homomorphism
with the kernel K'. For A,B € 9>, (AB)” = (AB); o ((AB)*), = Ay o0
Beo (B*A*), = AP o BB, A € GL(2,K) with AT = A, 0 A* = id implies
AEA* = E, hence A* = A~! and so AXA™! = X for all X € 9.
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Consequently A € K and AA = A*A = A=A = E implies A € K, is the
kernel of o|g r(2,x) and this shows that B pg L(2,K) 18 a monomorphism.

a) For each X € \D"I\If(ﬁx) there is an @ € K’ such that aX € §, hence
aX = (aX)* = aX*, ie; X* = aa*X € K; - X. Now let X € 9%, such
that X* = eX for some ¢ € K;. Thenby € = 1, (1 + )X)* = (1 + )X)* =
(1+8eX = (1+¢)X,hence (1+e)XeHand X e U 1U(H*)if e £ —1,
If ¢ = —1, then by —1 € K@ there is an i € K with i> = —1 and this implies
¢ = —i. Consequently (iX)* = iX* = iX* = (—i)(-X) = iX € §, thus in
both cases X € U(~D@(5).

b)If X € U~1¥($5T), then aX € HT forsome a € K hence aX-aX = a2XX €
P,andso XX # 0,ie. ~10(5H+) c GL(2,K).

c) is a onsequence of b).

d) Let X = 0B € U~'¥(H*) with b € K',B € $*. Then AB(X) =
AbBA* = bABA* € ¥~1U(H*) since (ABA*)* = AB*A* by B* = B,
and ABA*(ABA*) = ABA*-A*BA = AA - AA - BB e U - BB. Hence, if
H CP,then: X€ I71P(H+) «= BeHt <= BBeP « A"B)c
Ht = APX)e T 1U(Ht).

e) Since /A = ¥($HT), e) is a consequence of d).

The hyperbolic kinematic space (PGL(2,K),J..) can be provided with the
congruence structure (K'A,K'B) = (K'C,K'D) : <= (A, B) = o(C,D)
and the restricted halforder «, which is defined on all collinear quadruples
(a,b,¢,d) of PGL(2,K) where the crossatio DV (a,b | c,d) is an element
of H; then [a,b | ¢,d] := sgn DV (a,b | ¢, d).

Now we have the result:

(5.4) Let =1 € K® and H' C P. Then (PGL(2,K), §m, -, &, U(H*)) is a
generalized kinematic group and /A := ¥($T) is with respect to the trace-
structures of incidence, congruence and halforder of the hyperbolic kinematic
space (PGL(2,K), §m, =, ) a generalized hyperbolic space,which is isomor-
phic with (), H, det, P). If the field H is euclidean then we have the additional
properties:

a) PGL(2,K) = PSL(2,K) =2 SL(2,K)” 2 SL(2,K) \ {E, -E}

b) @(57) = e(HF) = p(HF) and T(H*) = V(HH) = V(i) C
PGL(2,K) where T+ := {X€§H | X +X > 0, XX =1} ¢ SL(2,K).

) oHTT, U|HTT and o|HT T are injective, ie. $H7T can be considered as
the point set of the hyperbolic space.

d) SL(2,K) can be provided (as in the papers of H. Hotie [2],[3]) with a
spherical structure: (—1)'SL(2,K) — SL(2,K); X — —X is the antipodal



278 HELMUT KARZEL

map. If £, denotes the set of all 2-dimensional vector subspaces of (9, K),
then R := {L N SL(2,K) | L € £} is the set of all great circles. Then
(SL(2,K), &, (-1), ) is a two-sided incidence group and € := {SL(2,K) N
(K+KA)|AeSL(2,K)\{E,~E}} isa kinematic cover with D = {E,-E}
and R = {AC | A€ SL(2,K), Ce¢}.

Further, if we provide SL(2,K) with a congruence = by

(A,B) = (C,D): «— AB+BA =CD +DC

and an order structure « by

Let A,B,C € SL(2,K) such that A # B, —B, then we say: C lies between A
and B if and only if there are A, p € H®) such that C = AA + uB,

then the left-and right-translations of SL(2,K) are motions of (SL(2,K),=)
which preserve «. ' _

e) The structure (SL(2,K), &, (—1)',-,D,5§1’”+) has the properties: If we
restrict the structures &, 0, & onto 7 then $]+ becomes the 3-dimensional
hyperbolic space over H and SL(2, K)" is the group of all proper motions.
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