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PROPERTIES OF INFINITE HARMONIC FUNCTIONS
RELATIVE TO RIEMANNIAN VECTOR FIELDS

THOMAS BIESKE

We employ Riemannian jets which are adapted to the Riemannian ge-
ometry to obtain the existence-uniqueness of infinite harmonic functions
in Riemannian spaces. We then show such functions are equivalent to
those that enjoy comparison with Riemannian cones. Using comparison
with cones, we show that the Riemannian distance is a supersolution to
the infinite Laplace equation, but is not necessarily a solution. We find
some geometric conditions under which the Riemannian distance is infi-
nite harmonic and under which it fails to be infinite harmonic.

1. Introduction

In this article, we present an extension of the Euclidean results of Jensen [11]
and Juutinen [12] that viscosity infinite harmonic functions exist and are unique.
Our approach to the existence-uniqueness of viscosity infinite harmonic func-
tions differs from that of [12] in that we use Riemannian vector fields, which
have the added complexity that the second order derivative matrix of a smooth
function is not necessarily symmetric. We also use Riemannian jets and the
Riemannian maximum principle as detailed in [2]. These extend the Euclidean
jets and maximum principle from [9] into Riemannian spaces and employs the
natural Riemannian geometry.
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To create a Riemannian space, we begin with Rn and replace the Euclidean
vector fields {∂x1 ,∂x2 , . . . ,∂xn} with an arbitrary collection of vector fields or
frame

X = {X1,X2, . . . ,Xn}
consisting of n linearly independent smooth vector fields

Xi(x) =
n

∑
j=1

ai j(x)
∂

∂x j

for some choice of smooth functions ai j(x). Denote by A(x) the matrix whose
(i, j)-entry is ai j(x). We always assume that det(A(x)) 6= 0 in Rn and we note
that when A is the identity matrix, we have the Euclidean environment. We fix
an inner product 〈·, ·〉 and related norm ‖ · ‖ so that this frame is orthonormal.
The Riemannian metric d(x,y) is defined by considering this frame to be an
orthonormal basis of the tangent space at each point.

The natural gradient is the vector

DXu = (X1(u),X2(u), . . . ,Xn(u))

and the natural second derivative is the n× n not necessarily symmetric ma-
trix with entries Xi(X j(u)). Because of the lack of symmetry, we introduce the
symmetrized second-order derivative matrix with respect to this frame, given by

(D2
Xu)? =

1
2
(D2

Xu+(D2
Xu)t).

With this frame, we may define the infinite Laplace operator

∆X,∞u = 〈(D2
Xu)?DXu,DXu〉

and for 2≤ p < ∞, we may define the p-Laplace operator

∆X,pu =
[
‖DXu‖p−2

∆Xu+(p−2)‖DXu‖p−4
∆X,∞u

]
= div (‖DXu‖p−2DXu).

In addition, we define the Sobolev spaces W 1,p and W 1,p
0 for 1≤ p≤∞ with

respect to this frame in the usual way.
Our results concern viscosity solutions to the infinite Laplace equation. We

recall the definition of the Riemannian jets J2,+
X and J2,−

X . (See [2] for a more
complete analysis of such jets.)

Definition 1. Let u be an upper semi-continuous function. Consider the set

K2,+
X u(x) =

{
ϕ ∈C2 in a neighborhood of x, ϕ(x) = u(x),

ϕ(y)≥ u(y), y 6= x in a neighborhood of x
}

.
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Each function ϕ ∈ K2,+
X u(x) determines a vector-matrix pair (η ,X) via the rela-

tions
η =

(
X1ϕ(x),X2ϕ(x), . . . ,Xnϕ(x)

)
Xi j = 1

2

(
Xi(X j(ϕ))(x)+X j(Xi(ϕ))(x)

)
.

(1)

We then define the second order superjet of u at x by

J2,+
X u(x) = {(η ,X) : ϕ ∈ K2,+u(x)},

the second order subjet of u at x by

J2,−
X u(x) =−J2,+

X (−u)(x)

and the set-theoretic closure

J2,+
X u(x) = {(η ,X) :∃{xn,ηn,Xn}n∈N with (ηn,Xn) ∈ J2,+

X u(xn)
and (xn,u(xn),ηn,Xn)→ (x,u(x),η ,X)}.

We then use these Riemannian jets to define viscosity infinite harmonic
functions as follows:

Definition 2. A lower semi-continuous function v is viscosity infinite super-
harmonic in a bounded domain Ω if v 6≡ ∞ in each component of Ω and for all
x0 ∈Ω, whenever (η ,Y ) ∈ J2,−

X v(x0), we have

−〈Y η ,η〉 ≥ 0.

An upper semi-continuous function u is viscosity infinite subharmonic in a
bounded domain Ω if u 6≡ −∞ in each component of Ω and for all x0 ∈ Ω,
whenever (η ,X ) ∈ J2,+

X u(x0), we have

−〈X η ,η〉 ≤ 0.

A viscosity infinite harmonic function is both a viscosity infinite subharmonic
and a viscosity infinite superharmonic function.

Our main result is the following theorem. (See Definitions 3, 4, and 6 for
appropriate definitions.)

Main Theorem. Given a domain Ω and a function u, the following are equiva-
lent.

1. u is a gradient minimizer.

2. u is viscosity infinite harmonic.
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3. u is potential infinite harmonic.

4. u enjoys comparison with cones.

In addition, the corresponding “one-sided” statements hold. Namely, the fol-
lowing are equivalent.

(I) u is a gradient sub(super)-minimizer.

(II) u is viscosity infinite sub(super)-harmonic.

(III) u is potential infinite sub(super)-harmonic.

(IV) u enjoys comparison with cones from above(below).

2. Existence-Uniqueness of Infinite Harmonic Functions

In this section, we present an extension of the Euclidean results of Jensen [11]
and Juutinen [12] that viscosity infinite harmonic functions exist and are unique
in the Euclidean setting. Because of the Riemannian structure, we must use the
Riemannian maximum principle as detailed in [2], which extends the Euclidean
maximum principle from [9] into Riemannian spaces and employs the natural
Riemannian geometry. We note that the results of [2] do not directly apply to
our setting, because the infinite Laplace operator is degenerate elliptic but not
uniformly elliptic. However, we shall use those results as a key first step in our
proof. We combine those results with the Jensen auxiliary functions introduced
in [11] in order to prove uniqueness. The existence proof, which constructs a
(Riemannian) Lipschitz solution, follows proofs found in [11], [12], [3], and [4]
and is omitted.

In order to prove uniqueness, we shall use the Riemannian Maximum Prin-
ciple proved in [2]. For our purposes, we will need the following corollary to
the Maximum Principle.

Corollary 2.1. Let u be an upper semi-continuous function in a bounded do-
main Ω ⊂ Rn and let v be a lower semi-continuous function in Ω. Let one of u
or v be locally Lipschitz. Then for the vectors η+

τ and η−τ and the matrices Xτ

and Yτ in the Riemannian maximum principle, we have

‖η+
τ ‖2−‖η−τ ‖2 = o(1)

and 〈Xτη
+
τ ,η+

τ 〉−〈Yτη
−
τ ,η−τ 〉 = o(1).

Proof. We may assume without loss of generality that u is locally Lipschitz. We
then obtain

u(x)− v(y)− τψ(x,y)≤ u(xτ)− v(yτ)− τψ(xτ ,yτ)
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where ψ(x,y) = |x− y|2, the square of the Euclidean distance between points x
and y. Setting x = y = yτ , we have

τψ(xτ ,yτ)≤ u(xτ)−u(yτ)≤Cd(xτ ,yτ)≤C(ψ(xτ ,yτ))
1
2 . (2)

Before continuing with the proof, we recall from [9] that there exist n× n
symmetric matrices Xτ ,Yτ so that

(τDx(ψ(xτ ,yτ)),Xτ) ∈ J2,+
eucl u(xτ)

and
(−τDy(ψ(xτ ,yτ)),Yτ) ∈ J2,−

eucl v(yτ)

with the property

〈Xτγ,γ〉−〈Yτ χ,χ〉 ≤ 〈Cγ⊕χ, γ⊕χ〉 (3)

where the vectors γ,χ ∈ Rn, and

C = τ(A2 +A) and A = D2
x,y(ψ(xτ ,yτ))

are 2n× 2n matrices. These Euclidean jets are related to the Riemannian jets
via the twisting lemma given by

Lemma 2.2. [2, Lemma 3] For smooth functions u we have

DXu(x) = A(x) ·∇euclu(x),

and for all t ∈ Rn

〈
(
D2

Xu(x)
)∗· t, t〉=

〈A(x) ·D2u(x) ·At(x)· t, t〉+
n

∑
k=1
〈At(x)· t,D

(
At(x)· t

)
k〉

∂u
∂xk

(x)

where D2u is the Euclidean second derivative matrix and D represents Eu-
clidean differentiation.

In the computations that follow, we shall denote the evaluations of the sum-
mand derivatives D(At(x)· t)k at the point x0 and for the vector η ∈ Rn by
D(At(x) · t)k[x0,η ].

Proceeding with the proof and using the notation of [2], we define the vector
ξτ = τDx(ψ(xτ ,yτ)) where Dx denotes (Euclidean) differentiation with respect
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to the components of the point x. For the vectors, because Ω is a bounded
domain and A is a matrix with smooth entries (as defined in Section 1), we have

‖η+
τ ‖2−‖η−τ ‖2 = (‖η+

τ ‖−‖η−τ ‖)(‖η+
τ ‖+‖η−τ ‖)

≤ ‖η+
τ −η

−
τ ‖(‖A(xτ)ξτ‖+‖A(yτ)ξτ‖)

≤ (C1τψ(xτ ,yτ))(‖A(xτ)‖+‖A(yτ)‖)‖ξτ‖
≤ C2(ψ(xτ ,yτ))

1
2 τ(ψ(xτ ,yτ))

1
2

and the result follows from the fact that τ(ψ(xτ ,yτ))→ 0 as τ → ∞ [2].
We then obtain

〈Xτη
+
τ ,η+

τ 〉−〈Yτη
−
τ ,η−τ 〉=

〈XτAt(xτ)η+
τ ,At(xτ)η+

τ 〉−〈YτAt(yτ)η−τ ,At(yτ)η−τ 〉

+
n

∑
k=1
〈At(xτ)η+

τ ,D(At(p) · t)k[xτ ,η
+
τ ]〉(ξτ)k

+
n

∑
k=1
〈At(yτ)η−τ ,D(At(q) · t)k[yτ ,η

−
τ ]〉(ξτ)k

so that we obtain for the matrix C as in [9]

〈Xτη
+
τ ,η+

τ 〉−〈Yτη
−
τ ,η−τ 〉 ≤

〈C (At(xτ)η+
τ ⊕At(yτ)η−τ ),At(xτ)η+

τ ⊕At(yτ)η−τ 〉

+ τ

n

∑
k=1
〈At(xτ)η+

τ ,D(At(x) · t)k[xτ ,η
+
τ ]〉∂ψ

∂xk
(xτ ,yτ)

− τ

n

∑
k=1
〈At(yτ)η−τ ,D(At(y) · t)k[yτ ,η

−
τ ]〉∂ψ

∂xk
(xτ ,yτ)

= I + II + III.

We first observe that term I is controlled by

Cτ‖At(xτ)η+
τ −At(yτ)η−τ ‖2.

Using the definition of η+
τ and η−τ and the fact that

∂ψ

∂xk
(xτ ,yτ)≤C(ψ(xτ ,yτ))

1
2

we have that term I is controlled by

Cτ
3
ψ(xτ ,yτ)‖At(xτ)A(xτ)−At(yτ)At(yτ)‖2.
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By the smoothness of the entries of the matrix A, we conclude that term I is
dominated by Cτ3ψ(xτ ,yτ)2. From Equation (2), we conclude term I is o(1).

Similarly, the difference of the last two terms is controlled by

Cτ(ψ(xτ ,yτ))
1
2

n

∑
k=1

τ
2(ψ(xτ ,yτ))|xτ − yτ |

which is o(1) by Equation (2). The corollary follows.

Using the Jensen auxiliary functions [11] and following the techniques of
[11], [12] and [4], we have the following theorem, giving uniqueness of viscos-
ity infinite harmonic functions.

Theorem 2.3. Let u be a viscosity infinite subharmonic function and v be a
viscosity infinite superharmonic function in a domain Ω such that if x ∈ ∂Ω,

limsup
y→x

u(y)≤ limsup
y→x

v(y)

where both sides are not −∞ or +∞ simultaneously. Then u≤ v in Ω.

We now present two corollaries to the comparison principle which will be
useful in the sequel. We first begin with a definition.

Definition 3. A lower semi-continuous function u : Ω→ R ∪{∞} that is not
identically infinity in each component of Ω is potential infinite superharmonic
if for each open set U ⊂⊂ Ω and each viscosity infinite harmonic function f
defined on U ,

u≥ f on ∂U ⇒ u≥ f in U.

A function u is potential infinite subharmonic if −u is potential infinite su-
perharmonic. A function u is potential infinite harmonic if it is both potential
infinite subharmonic and superharmonic.

We then have the first corollary, whose proof follows that of Theorem 5.8 of
[12] and is omitted.

Corollary 2.4. A function u is viscosity infinite subharmonic if and only if it is
potential infinite subharmonic. A function u is viscosity infinite superharmonic
if and only if it is potential infinite superharmonic. A function is viscosity infinite
harmonic if and only if it is potential infinite harmonic.

Next, we recall the definition of gradient minimizers.
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Definition 4. The function u ∈ Lip(Ω) is an gradient minimizer if for every
V ⊂Ω and v ∈ Lip(V ), such that u = v on ∂V , then

‖DXu‖L∞(V ) ≤ ‖DXv‖L∞(V ).

The function u ∈ Lip(Ω) is an gradient super-minimizer if the above holds for
v≥ u. The function u ∈ Lip(Ω) is an gradient sub-minimizer if the above holds
for v≤ u.

It is clear from the definition that a function is a gradient minimizer means
it is both a gradient sub-minimizer and gradient super-minimizer. The converse
implication can be found in Section 4.3 of [1]. Also, a function u is a sub-
minimizer exactly when −u is a super-minimizer. It was shown in [6] (for C1)
and [16] (for arbitrary) that gradient minimizers in Riemannian spaces are vis-
cosity infinite harmonic functions. In particular, the proofs show that a gradient
sub(super)-minimizer is viscosity infinite sub(super)-harmonic.

We also have the following corollary, whose proof is similar to that in [14]
and omitted.

Corollary 2.5. Given a domain Ω, let u be viscosity infinite harmonic in Ω.
Then u ∈W 1,∞

loc and it is a gradient minimizer with respect to its trace.

We summarize our results of this section, which is most of the Main Theo-
rem:

Theorem 2.6. Given a domain Ω and a function u, the following are equivalent.

1. u is a gradient minimizer.

2. u is viscosity infinite harmonic.

3. u is potential infinite harmonic.

We also have what [1] refers to as “one-sided results”. Namely,

Theorem 2.7. Given a domain Ω and a gradient sub(super)-minimizer u, then u
is viscosity sub(super)-harmonic. In addition, u is viscosity sub(super)-harmo-
nic if and only if it is potential infinite sub(super)-harmonic.

3. Riemannian Cones

In this section, we discuss Riemannian cones and extend results found in [14]
and [1] including the important property of comparison with cones. In the Eu-
clidean case, functions enjoying comparison with cones were shown to be ex-
actly those that were viscosity infinite harmonic [8] and we extend this result to
Riemannian spaces. This will complete the proof of the Main Theorem.
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We begin with the definition of Riemannian cones, recalling that the Rie-
mannian distance between points x and y is denoted d(x,y).

Definition 5. Let a,b ∈ R. Given a point x and an open set U , we define the
function θ : ∂ (U \{x})→ R by

θ(y) = a+bd(x,y).

The Riemannian cone based on (U,x) is the unique viscosity infinite harmonic
function ω

a,b
U,x in U \{x} such that

ω
a,b
U,x = θ on ∂ (U \{x}).

Note that for sufficiently large p, a point has positive p-capacity. In addi-
tion, the previous sections show the existence-uniqueness of Riemannian cones.
Thus, they are well-defined.

To obtain bounds on cones, we state a result of Monti and Serra-Cassano
[15].

Theorem 3.1. Given y ∈ Rn, for almost every x ∈ Rn, we have

‖DXd(x,y)‖ ≤ 1.

We then prove the following.

Proposition 3.2. Given a pair (U,x) and a,b ∈ R, the cone ω
a,b
U,x satisfies

a−|b|d(x,y)≤ ω
a,b
U,x(y)≤ a+ |b|d(x,y)

for y ∈U.

Proof. If x ∈U , we compute

ω
a,b
U,x(y)−a = ω

a,b
U,x(y)−ω

a,b
U,x(x)≤ ‖DXω

a,b
U,x‖L∞(U)d(x,y).

The cones, as viscosity infinite harmonic functions, are gradient minimizers.
Thus,

‖DXω
a,b
U,p‖L∞(U) ≤ ‖bDXd(x,y) ‖L∞(U) ≤ |b|.

We also note that we have

ω
a,b
U,x(y)−a = ω

a,b
U,x(y)−ω

a,b
U,x(x)≥−‖DXω

a,b
U,x‖L∞(U)d(x,y).

Similarly, we obtain
ω

a,b
U,x(y)−a≥−|b|d(x,y).
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If x /∈U , let γ be the geodesic between x and y and observe that there is a point
y′ ∈ ∂U ∩ γ . Thus,

d(x,y) = d(x,y′)+d(y′,y).

In particular, we have

ω
a,b
U,x(y)−a−bd(x,y′) = ω

a,b
U,x(y)−ω

a,b
U,x(y

′)≤ ‖DXω
a,b
U,x‖L∞(U)d(y,y′).

As above, we then obtain

ω
a,b
U,x(y)≤ a+bd(x,y′)+ |b|d(y,y′)≤ a+ |b|d(x,y′)+ |b|d(y,y′).

We also then have

ω
a,b
U,x(y)−a−bd(x,y′) = ω

a,b
U,x(y)−ω

a,b
U,x(y

′)≥−‖DXω
a,b
U,x‖L∞(U)d(y,y′).

We then conclude

ω
a,b
U,x(y)≥ a−|b|d(x,y′)−|b|d(y,y′).

The results then follow from our choice of y′.

Having analyzed the Riemannian cones we now define the concept of com-
parison with cones, analogous to the Euclidean case [8].

Definition 6. Let U ⊂ Rn be an open set, and let u : U → R. Then u enjoys
comparison with cones from above in U if for every open V ⊂U and a,b ∈ R
for which u≤ ω

a,b
U,x holds on ∂ (V \{x}), then we have u≤ ω

a,b
U,x in V . A similar

definition holds for the function u enjoying comparison with cones from below
in U . The function u enjoys comparison with cones in U exactly when it enjoys
comparison with cones from above and below.

With these definitions, we obtain the following implication.

Lemma 3.3. A viscosity infinite superharmonic function in U enjoys compar-
ison with cones from below in U. Similarly, a viscosity infinite subharmonic
function enjoys comparison with cones from above in U and a viscosity infinite
harmonic function enjoys comparison with cones in U.

In order to relate the property of comparison with cones with the previous
properties, we must proceed through a series of propositions. We again focus
on “one-sided results” and so we shall focus our attention on comparison with
cones from above and follow the general scheme of [1]. The two main techni-
cal issues in extending these results are the differences between Euclidean and
Riemannian geometry and the lack of an explicit formula for the Riemannian
cones. The proofs below highlight where these issues appear.
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Proposition 3.4. Let u be an upper semi-continuous function in a domain U
that enjoys comparison with cones from above. For a point y ∈U, define the
function S(y,r) by

S(y,r)≡max{u(w)−u(y)
r

: d(w,y) = r}.

Then, we have

1.
max{u(x) : d(x,y) = r}= max{u(x) : d(x,y)≤ r}.

2.
u(x)≤ u(y)+S(y,r)d(x,y)

for points x ∈U so that d(x,y)≤ r with 0≤ r < d(y,∂U)

3. S(y,r) is monotonic and non-negative

4. u ∈W 1,∞
loc (U)

Proof. To prove Equation (1), we note that the cone with boundary data M ≡
max{u(x) : d(x,y) = r} on Br(y) is the constant M itself. Since u≤M on ∂Br(y),
comparison with cones from above implies

u≤M in Br(y).

Equation (1) follows. To prove Equation (2), we notice that it holds when
d(x,y) = 0 and when d(x,y) = r. Using u(y) + S(y,r)d(x,y) as the boundary
data for the cone ω , we have by comparison with cones from above that

u(x)≤ ω(x).

Equation (2) then follows from Proposition 3.2. The proof of statement 3 is
identical to Lemma 2.4 of [8] and the proof of statement 4 is identical to Lemma
2.5 of [8] and therefore omitted.

In light of the previous proposition, it is reasonable to define the function
S(y) by

S(y)≡ lim
r→0

S(y,r) = inf{S(y,r) : 0 < r < d(y,∂U)}.

In addition, if we let Lu(U) denote the smallest constant L so that

|u(x)−u(y)| ≤ L d(x,y)
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for x,y ∈U , then we may define the similar function Tu(x) by

Tu(x)≡ lim
r→0

Lu(Br(x)) = inf{Lu(Br(x)) : 0 < r < d(x,∂U)}.

We note that this is well-defined on the extended reals and if u is Lipschitz, we
have

sup
x∈U

Tu(x)≡ ‖DXu‖L∞ .

We then have the following proposition.

Proposition 3.5. Let u be as in the previous proposition. Then, we have

1. Tu(x) is upper semi-continuous.

2. Let x,y∈U so that γxy ⊂U where γxy is the geodesic between x and y with
γxy(0) = x and γxy(1) = y. Then,

|u(x)−u(y)| ≤ (max{S(w) : w ∈ γxy})d(x,y).

3. Tu(y) = S(y)

Proof. The proof of the first statement can be found in Section 1.5 of [1]. The
next two statements follow from Lemma 2.15 in [1] and the fact that along a
Riemannian geodesic, we have

d(x,γxy(t)) = td(x,y).

Lastly, we state the key technical lemma, given as Proposition 4.7 in [1].
The proof is omitted.

Lemma 3.6. Let U be bounded and let u ∈C(U) enjoy comparison with cones
from above. Let x0 ∈U so that S(x0) > 0 and let δ > 0. Then, there is a sequence
of points {x j} ⊂U and a point x∞ ∈ ∂U so that

1. d(x j,x j−1)≤ δ

2. γ j, the geodesic between x j and x j−1 is contained in U

3. S(x j)≥ S(x j−1)

4. lim j→∞ x j = x∞

5. u(x∞)−u(x0)≥ S(x0)∑
∞
j=1 d(x j,x j−1).
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We now have the technical information needed to prove the following The-
orem.

Theorem 3.7. A function that enjoys comparison with cones from above is a
gradient sub-minimizer. A function that enjoys comparison with cones from
below is a gradient super-minimizer. A function that enjoys comparison with
cones is a gradient minimizer.

Proof. Again, the last statement follows from the first two, and the first two are
symmetric, so we shall prove only the first statement.

We suppose that u enjoys comparison with cones from above and is not a
gradient sub-minimizer in the domain U . Let v be a Lipschitz function so that
v≤ u in U and u = v on ∂U . Suppose that

‖DXu‖L∞(V ) > ‖DXv‖L∞(V ).

This is equivalent to

sup{Tu(x) : x ∈U}> sup{Tv(x) : x ∈U}.

Thus, there is a x0 ∈U so that

Tu(x0) > sup{Tv(x) : x ∈U}.

Using the Lemmas above, we then have

u(x∞)−u(x0) ≥ S(x0)
∞

∑
j=1

d(x j,x j−1) = Tu(x0)
∞

∑
j=1

d(x j,x j−1)

> sup{Tv(x) : x ∈U}
∞

∑
j=1

d(x j,x j−1)≥
∞

∑
j=1
|v(x j)− v(x j−1)|

≥
∞

∑
j=1

(v(x j)− v(x j−1)) = v(x∞)− v(x0).

Since x∞ ∈ ∂U and v = u on ∂U , we then obtain

u(x0) < v(x0)

contradicting the fact that v ≤ u in U . Our supposition is therefore false, and u
is a gradient sub-minimizer.

We summarize the equivalence results with the following theorem.

Main Theorem. Given a domain Ω and a function u, the following are equiva-
lent.
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1. u is a gradient minimizer

2. u is viscosity infinite harmonic

3. u is potential infinite harmonic

4. u enjoys comparison with cones.

In addition, the corresponding “one-sided” statements hold. Namely, the fol-
lowing are equivalent.

(I) u is a gradient sub(super)-minimizer.

(II) u is viscosity infinite sub(super)-harmonic.

(III) u is potential infinite sub(super)-harmonic.

(IV) u enjoys comparison with cones from above(below).

Corollary 3.8. Let a,b ∈ R with b ≥ 0. Let U be a domain and x an arbitrary
point. Define the function D : U → R by d(y) = a + b d(x,y). Then D(y) is a
viscosity infinite superharmonic function. In particular, the distance function is
a viscosity infinite superharmonic function. By symmetry, D−(y)≡ a−b d(x,y)
is a viscosity infinite subharmonic function.

Proof. We will show the function D(y) enjoys comparison with cones from be-
low. Let U,x,a,b and D(y) be as above. Let ωD be the Riemannian cone equal
to D(y) on ∂ (U \ {x}). Suppose the cone ω has the property that ω ≤ ωD on
∂U . Then, by the comparison principle and Proposition 3.2,

ω ≤ ωD ≤ a+b d(x,y) = D(y)

in U .

4. Geometry of Riemannian Cones

In the Euclidean environment, it is well-known ([8], [1]) that the functions D(y)
are also viscosity infinite subharmonic functions and thus the Euclidean cones
are exactly those functions D(y). By symmetry, the restriction that b≥ 0 can be
removed, and the result holds for all D(y). Due to the richness of the geometry,
the analogous result in the Riemannian environment does not necessarily hold.
Before beginning our study of this phenomenon, we will explore two examples
concerning the Riemann sphere.
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Example 4.1. Consider the Riemann sphere with the spherical metric so that the
geodesics are arcs of great circles. Let the domain U be the southern hemisphere
and fix the point x as the north pole. Then, on the boundary of U , D(y) equals
a fixed constant D. Having constant boundary data, the corresponding cone is
the constant D. Clearly, we have D < D(y) in U and D = D(y) on ∂U . We note
that the interior points are farther away from the north pole than the boundary
points. We also note that geodesics from the north pole to any boundary point
do not intersect the interior.

Example 4.2. Again consider the Riemann sphere as in Example 4.1. Let U
be the southern hemisphere joined with a semicircle lying in the northern hemi-
sphere whose diameter is on the equator. We make the radius of the semicircle
one eighth the distance from the equator to the north pole, so that it does not in-
tersect the north pole and it is contained entirely within the western hemisphere.
(For example, U is the southern hemisphere of the Earth, plus South America.)
The point x is again the north pole. We see that geodesics from the north pole to
∂U do not intersect U . We also note that the northern hemisphere points of U
are closer to x than some boundary points of U while the southern hemisphere
points of U are further away from the north pole than any boundary point of
U .

These examples motivate the following definitions concerning points in a
domain U .

Definition 7. 1 Let U be a bounded domain, and x an arbitrary point. A
point y ∈U is geodesically near with respect to the point x if

y ∈ Λ = {
⋃

z∈∂U

γ : γ is a geodesic between x and z}.

2 A point y ∈U that is not geodesically near is geodesically far with re-
spect to the point x. That is, y /∈ Λ.

3 A point y ∈ U is boundary near with respect to the point x if there
exists z ∈ ∂U so that

d(x,y) < d(x,z).

4 A point y ∈U that is not boundary near is boundary far with respect to
the point x. That is, for all z ∈ ∂U , we have

d(x,y)≥ d(x,z).

We drop the phrase “with respect to x” in these definitions when the point x
is understood.
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We first note that because geodesics need not be unique, the set Λ actually
includes all geodesics between points x and z. Points that are geodesically near
with respect to x lie on some geodesic from x to the boundary point z. Addi-
tionally, it is clear that geodesically near implies boundary near, or equivalently,
boundary far implies geodesically far.

We next note that in Example 4.1, it is clear that no interior point is boundary
near and no interior point is geodesically near. However, in Example 4.2, the
northern hemisphere points (lying in the semicircle) are geodesically far, but not
boundary far. This differs from the Euclidean environment, in which all interior
points are boundary near and geodesically near. (See [1] for a more complete
discussion.)

In Example 4.1, the cone boundary data is constant, which leads us to first
consider cones with constant boundary data. Here again, we stray from the
Euclidean environment, in which bounded domains with b 6= 0 produce non-
constant cone boundary data. In particular, when in the Euclidean environment,
given b 6= 0, a vertex point x, and a bounded domain Ω with D(y) constant on
∂Ω, we conclude that Ω is an n-dimensional ball with x as the center. Using
the definition of cones from Definition 5, the boundary used to construct the
cone is ∂ (Ω \ {x}) = ∂Ω∪{x}. Since D(x) = a 6= D(y) for any y ∈ ∂Ω, the
cone boundary data is non-constant. This differs from Example 4.1, where we
have constant cone boundary data when b 6= 0 and we have ∂ (Ω \ {x}) = ∂Ω,
because x 6∈Ω.

Returning to the Riemannian environment, when b = 0 we have ωD(y) =
D(y) = a for all points y in any bounded domain U . In the case when b > 0, the
constant boundary data and uniqueness of the cones produces the constant cone
ωD. We have the following theorem concerning constant Riemannian cones
when b > 0.

Theorem 4.3. Let U be a bounded domain, x ∈ Rn, and a,b ∈ R with b > 0.
Define D(y) = a + b d(x,y) as above. Suppose D(z) = K for z ∈ ∂ (U \ {x})
for some constant K. Let ωD be the (constant) Riemannian cone with boundary
data K. Then the point y ∈ U is boundary far with respect to x exactly when
ωD(y) < D(y).

Proof. Suppose that y is boundary far with respect to x. Because y is an interior
point to U \ {x}, there is an r > 0 so that the ball Br(y) ⊂ (U \ {x}). Let γ be
a geodesic from x to y. Then, there is a point x? ∈ (Br(y) \ {y})∩ γ with the
property

d(x,y) = d(x,x?)+d(x?,y).

Using this property, we see that D(y) > D(x?). We would then have

ωD(y) = K = ωD(x?)≤ D(x?) < D(y).
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We note that the penultimate inequality is a consequence of Proposition 3.2.
Suppose next that ωD(y) < D(y). Then by Proposition 3.2, we have

K = ωD(y) < D(y).

That is, for any z ∈ ∂ (U \{x}),

a+b d(x,z) < a+b d(x,y).

Because b > 0, we conclude that y is boundary far with respect to x.

The case of non-constant cones is more involved. We have the following
partial result that parallels the constant case.

Theorem 4.4. Let U,x,a,b be as in Theorem 4.3. Suppose that D(z) is non-
constant on ∂ (U \{x}) and let ωD be the (non-constant) Riemannian cone with
boundary data D(z). Then we have the implications

y is boundary far with respect to x⇒
ωD(y) < D(y)⇒ y is geodesically far with respect to x.

Proof. We first observe that as a non-constant (continuous) infinite harmonic
function on a compact set, we have that ωD achieves its maximum on U . A
consequence of the Harnack inequality [14] is the strong maximum principle
which states that this maximum occurs only on the boundary.

Now assume that y is boundary far. Suppose ωD(y) = D(y). Because y is
boundary far and b > 0, for all z ∈ ∂ (U \{x}) we have D(y)≥ D(z). That is,

ωD(y)≥ ωD(z)

for all z ∈ ∂ (U \{x}). This contradicts the fact that the maximum of ωD occurs
only on the boundary. We conclude that ωD(y) < D(y).

Next, suppose that there is a point y so that ωD(y) < D(y) and let γ be a
geodesic from x to z ∈ ∂ (U \ {x}) with γ(0) = x,γ(1) = z, and for some t0 ∈
(0,1), γ(t0) = y. Then

d(x,z) = d(x,y)+d(y,z).

We then have

ωD(z)−ωD(y) = D(z)−ωD(y) > D(z)−D(y)
= b

(
d(x,z)−d(x,y)

)
= bd(y,z)

and so the Lipschitz constant of ωD in U is strictly larger than b. Since ωD is a
gradient minimizer of its trace, which equals D(·), we know

‖DXωD‖L∞(U) ≤ b.

We then conclude that t0 does not exist.
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Ideally, we would like to prove both converse implications of the above
theorem. This, however, is not possible, since if both converse statements are
true, we would have proved that geodesically far points are boundary far, which
is shown to be false by Example 4.2. We conclude that the converse statements
can not both be true. We then have the following Lemma motivated by Example
4.2 showing that boundary near need not imply equality.

Lemma 4.5. Let U,x,a,b,d(y) and ωD(y) be as in Theorem 4.4. Additionally,
suppose U has points that are boundary far with respect to x and points that are
boundary near with respect to x. Suppose that at least one boundary far point in
U is the limit point of a sequence of boundary near points in U. Then there exists
a point y ∈U that is boundary near with ωD(y) < D(y). Thus, ωD(y) < D(y)
does not necessarily imply that y is boundary far.

Proof. Suppose that ωD(y) < D(y) implies y is boundary far. Then the logically
equivalent implication that y is boundary near implies ωD(y) = D(y) would be
true. We will show, however, that the latter implication is false.

By assumption, we may construct a sequence {yn}n∈N of points in U that are
boundary near with respect to x and converge to the point y∈U that is boundary
far with respect to x. By our assumption, we have ωD(yn) = D(yn). By conti-
nuity of the cone function, this implies ωD(y) = D(y). However, y is boundary
far, and so Theorem 4.4, which showed that ωd(y) < d(y), is contradicted.

It is an open problem to explore the last geometric condition further in order
to determine precisely the conditions for equality. Unlike the Euclidean case,
we are hampered by a lack of explicit formulas for both the Riemannian cones
and the Riemannian geodesics.
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