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GROUP ASSOCIATIONSCHEMES AND
SCHUR RINGS

UDO OTT

1. Introduction.

One of the major problems of finite geometry and algebraic combinatorics
is to provide insight into the action of a group acting as an automorphism group
on a finite combinatorial structure. In practice the choice of the appropiate tool
for investigating this general problem depends on the knowledge of the action of
the group: one distinguishes groups with large stabilizers, and groups with trivial
stabilizers. In the first case, the adequate techniques are taken from group theory
and have very often been successsfully applied. But if there is no natural way
of introducing proper subgroups of the given group authomorphisms difficulties
arise in finding an appropiate method in group theory. This is especially true in
the case of regular groups of automorphisms. However, in this case a powerful
method is given in the frame of association schemes.

2. Definition of Group Association Schemes.

A number of questions about the combinatorial structure of a group G and
its modules are related to the study of various partitions of the group. A partition

on ( is a partition
P = {A17A2)' . °)A7'}

of GG such that |
(1) Ay = {1}
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(2) Ag,...,Ar #0,

and such that for each 7 there is a 7 with

(3) A7V ={z7t |z e} = A,

A group association scheme G is a finite group with a partition &2 on G
such that for any element z € A, the number af ;(z) of pairs (z,y) € A; x A,
satisfying the equation xy = z is independent of the choice of the element z in
Aj. These integers are denoted by af, ;- Clearly, we have af, ; 2 0. The number
of components of the partition is called the rank of the group association scheme.

There are two important types of group association schemes: primitive and
imprimitive . A group association scheme G is called primitive if {1} and G
are the only subgroups of GG represented by the union of certain components of
the partition. In the contrary case, we say that the group association scheme is
imprimitive.

A powerful method to develop combinatorial properties of group association
schemes is the theory of algebras. The idea is to attach to each component of the
partition a certain element in the group algebra FG of G over the field F. By
definition the group algebra FG consists of all formal linear combinations

'azz%g

geG

with a4 € F for g € G. For a component A; of the group association scheme we

set
)\i = Z g.
geEA;
One verifies easily that
Aidj = af i\
k
In other words, the elements Ay,...,A; € FG form a base of an 7-

dimensional subalgebra of F G, the so-called Schur ring of the group association

scheme over F, denoted by S.
To analyze the combinatorial structure of a group association scheme we

need also the definition of an automorphism f : G — G of the group association
scheme: thisis abijection f of G leaving all the relations given by the components
of the partition invariant. This mean that

syt €A = f(z) fly) TP €A
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forv=1,...,7. Clearly, a group element g € G induces the automorphism
JG6— G
Po° o pylz) =ag

Remarks. There is a general theory of association schemes and we refer the
reader to Bannai [1] for a complete introduction to this field of interest. The
historical source of the notion of Schur rings is the theory of permutation groups
and a discussion of Schur’s work may be found in Wielandt [12]. We present the

most important example in 3.1.

3. Examples.

3.1 Permutation Groups with Regular Subgroups.
Let GG be a finite group acting transitively on the set 2. Assume that G admits a
subgroup H that is sharply transitive on {2, i.e. only the identity element of H

fixes points in §2.
Choose an element w of ) and let

Q= {w},Q2,...,0,
be the orbits of the stabilizer
Go ={9€G |uw?'=uw}.
Our aim will be to show that .
PN ={heH|w" e},

¢ =1,...,7, induces a group association scheme on H. The proof rests upon
the fact that there is a natural bijection from the set & of orbits of G on Q x
onto the set # = {§2; | i = 1,...,7} of orbits of G,, on 2, which is given by
the map
r. {5 — F
"1©— 0, ={a]|(w,a)eO}"

We set O = D71(Q).
Since H is sharply transitive on €2, it is obvious that & satisfies the
Equations (1), (2). In order to show that also the Equation (3) is true we need the

argument thatif © is an orbitof G on Q2 x 2 thenalso ©* = {(x, ¥) | (¢, x) € ©}
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is an orbit. Now, (w,w”) € ©, h € H is equivalent to (w,w? ') € ©*, h € H,
whence the Equation (3) is fulfilled.

Suppose next that (w,w?) € O, z € H and (w,w”) € 0;, (w,w?) € O;
with z,y € H and zy = z. Setting z = 2zy~! we observe that (w¥,w?) € O;.
Thus the number of pairs (z,y) € A; X A; satisfying the relation zy = z equals
the number of points x in  such that (w, x) € ©; and (x,w?) € ©;. Since the
stabilizer G, acts transitively on the set of elements 1) such that (w, ¢) € Oy this
number is clearly independent of z € Ag. This proves that &2 defines a group
association scheme for H.

We will apply this concept in Section 6 for transitive groups of prime degree
to present a particular short proof of the following theorem of Burnside.

Theorem 1. (Burnside). Let G be a transitive group of prime degree p. Then G
is doubly transitive or isomorphic to a group of affine transformations

r—ar+b

over the prime field GF (p).

The proof of Burnside’s theorem requires also that we can regard each
element g € GG, as an automorphism of the group association scheme in the

following way. Set

4) Wwh = 9"

where g*(h) € H is uniquely determined. Then g* is a permutation of H.
Furthermore, the relation a‘:y‘l € A; is equivalent to W € ;, hence
equivalent to (w,w® ) € ©;, which means that (w¥, w®) € ©;.
By the same argument (w¥9,w®) = (w9 @) w9 (#)) € O©; is equivalent to
g*(z)g*(y) "t € A; for g € G,,. Thus g* is an automorphism, as required.

In other words, after identifying the set £ with the group H via the
correspondence h <— w” each element g € G,, acts as an automorphism on
the group association scheme H.

3.2 Sharply Flag-Transitive Groups on Generalized Polygons.
In this section we present a picture of non-abelian group association schemes
related to generalized polygons. A treatment of the general background and the
basic concepts of generalized polygons might be found in Kantor [4].

Let G = (£,.Z; I) denote a generalized n-gon with parameters s,t > 1.
Furthermore, suppose that G admits a group G of automorphism acting sharply
transitively on the set % of chambers of the geometry. Then we are able to
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construct a group association scheme over G' with the help of the generating
components Ay = {1} and

=Go \ {1}
=Ga\ {1},
where {4, a} denotes a fixed chamber in .%. It is not difficult to see that
(5) z\lAZAlAZ e - :AQA]_AzA]_ s
n factors n factors

The partition & consists then of Ag and all the 2n — 1 products of the form

. AiAj e
—_——
at most n factors

where ¢, 7 is a permutation of 1,2.
We wish to point out that the Schur ring of this group association scheme

is isomorphic to the Hecke algebra of the geometry (refer to Ott [9]).
Conjecture 1. Suppose that n = 3. Then we have s = t € {1, 2, 8}.

3.3 Difference Sets with -1 as Multiplier and Partial Addition Sets.
Here we assume that G is a group association scheme of rank 7 = 3. From the

relation
(6) A2 =al +bAy + s

we deduce that the group association scheme is uniquely determined by a
nontrivial subset A = A3 of G satisfying:
1. 1¢A;
2. Al =Aor A7t =G\ (AU {1});
3. there are integers b and c such that each element 1 # g € G admits exactly
b or c representations of the form g = zy with z Y € A depending on
respectively whether g is in A or not.

Clearly, property 2 implies that a = |A| or a = 0. In the first case the group
association scheme is known as a group with a partial addition set (refer to Ma
[8]). Moreover, such a partial addition set is known to be a difference set with
—1 as multiplier in the special case that b equals c¢. Thus partial addition sets
and difference sets with —1 as multiplier are special cases of group association
schemes of rank 7 = 3. We should mention that in the literature the subset G\ A
is also called a difference set, but without loss of generality one can assume that

1¢A.
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Conjecture 2. Suppose that G is an abelian difference set with —1 as multiplier
and let p be a prime divisor of the order n = |A2| — ¢ of this association scheme.
Then we have p € {2,3,5}.

4. Schur’s Multiplier Theorem.

In this section we present Schur’s fundamental theorem on multipliers,
which provide a useful method for certain questions concerning the existence of
group association schemes.

Let G, &7 be a group association scheme of rank 7 and S its Schur ring over
the field F. For what follows it will be convenient to introduce the following
terminology: let m be an integer and A be a subset of G. Then Al™ denotes the

subset :
A = {z™ | z e A}

)\=Zagg

geG

}\tm] = Z agg™.

geG

Similarly for

we set

The integer m is called a multiplier of the group association scheme if
whenever A; is a component of &2 then so is Agm]. In the special case

INEETY

k3

for i = 1,..., 7 the multiplier is called rational.

Remark. _In' the literature another slightly different definition of multipliers
appears, in which a multiplier is rational, as for istance in the case of difference
sets with —1 as multiplier.

With these preliminaries we can now state Schur’s result on multipliers:

Theorem 2 (Schur). Let G, = {A1,As,...,A;} be an abelian group
association scheme. Then every integer relatively prime to the group order is
a multiplier. |

Proof. The entire calculation depends on the well-known property that over the
ring & of integers every coset of the form m + Z°|G| contains a prime, provided
the integers m and |G| are relatively prime. Thus we may assume that m = p
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is a prime not dividing the group order. Then we choose the field F = GF (p)
and by using our assumption we observe that :

AP = \Ples

for every element A € S. Let g be an element in A;. Clearly, there is an integer
J such that g? € A;. We need to show that A[p = A;. For the proof of this
equation we may assume that |A;| < |Aj]; eventually we have to look at a prime
g with pg = 1 (mod|G]). The last statement is equivalent to the equation

A=A =
Of course, there are elements a, € F,s = 1,..., 7, such that
(7) =3 a0,
s=1

We conclude that a; = 0 or a; = 1 forall 1 < s < 7, hence a; = 1. Since
|A;| < |A;|, this forces that A? to be equal to A, the theorem is proved. O

It is obvious that on the basis of this result one can derive many standard
applications. For instance, as an almost immediate corollary we have

Corollary 1 (Ghinelli'Smit [2]; Hughes, van Lint, Wilson [11]). Let G be an
abelian difference set with —1 as multiplier. Then every integer relatzvely prime
to the group order is a rational multiplier. :

Another application:

Corbllary 2. Let G be an abelian partial addition set. Then every square of an
integer relatively prime to the group order is a rational multiplier.

In the non-abelian case there is no general result known about the existence
of multipliers. We infer from Section 3.2 that there are examples having only
the multiplier m = —1 (up to congruence). The smallest example here is the
Frobenius group of order 21. On the other hand, the symmetric group is a group
association scheme with respect to the partition into conjugacy classes for which
each integer relatively prime to the group order is a rational multiplier.

Using elementary properties of modular representation theory Ghinelli-Smit and
L.owe are able to generalize corollary (2):

Theorem 3 (Ghinelli-Smit, Lowe [6]). Let G be a partial addition set, whose
components are invariant under inner automorphisms of the group. Then every
square of an integer relatively prime to the group order is a rational multiplier.

Finally we would like to mention an application of Wielandt:
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Theorem 4 (Wielandt [12]). Assume that G is a primitive abelian group
association scheme of composite order. Then G does not contain cyclic Sylow
subgroups.

Again, as a corollary we obtain almost immediately

Corollary 3 (Hughes, van Lint, Wilson [11]). An abelian difference set with —1
as multiplier does not contain cyclic Sylow subgroup.

In the terminology of partial addition sets:

Corollary 4. Assume that G is a primitive abelian partial addition set of
composite order. Then G does not contain cyclic Sylow subgroups.

5. Divisibility Conditions.

As we mentioned earlier, the source of the notion of a group association
scheme is the theory of transitive permutation groups with sharply transitive
subgroups. Sometimes it happens that under this assumption the size of each
component divides the group order. Of course, in general this is not true.
Therefore the question arises under which circumstances a prime dividing the
length of a component divides also the group order. A first approach to this
question is given by the radical of the symmetric bilinear form on the Schur ring
defined to be the restriction of the standard bilinear form

(o, B) = trace (af3)

on the group algebra, were the trace () of + is the trace of the induced right
multiplication on the group algebra. In particular, we have :

_1IGl gh=1
One easily checks that

(®) a7 = {IOIN 220

The radical, rad (), of .7 ist the set of all elements v in . which are
orthogonal to ., hence we have »

rad(#) ={yes | (v,)=0}.

The important fact about the radical is that since (aﬁ, v) = (B,7va) and
(af,7v) = (o, By) itis an ideal in S.
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Lemma 1. Assume that G, & is a group association scheme and that the field
¥ has characteristic p not dividing the group order. Then a base of rad (&)
consists of all elements \; for which p divides |A;].

Proof. Clearly, by Equation (8) the congruence |A;| = 0 (mod p) implies that
i € rad (). Suppose now that

o= Za’i)\’i €rad ().

1=1

It follows that
0= (a, A7y = alG] Al

However, we have |G| # 0(modp). We conclude at once that a; = 0 or
|A;| = 0 (mod p), which proves the lemma. O

Using the fact that the radical is an ideal in the Schur ring we obtain

Corollary 5. Assume that G, 2 is a group association scheme and that the field
F has characterstic p not dividing the group order. Then the linear span of all
the elements X; such that p divides |A;| is an ideal in the Schur ring.

In the contrary case where p divides thé group order there is also the
following basic lemma and a short proof might be found in Wielandt [12]:

Lemma 2. Assume that G, & is an abelian primitive group association scheme
and that the field F has characteristic p dividing the group order. Then we have

AP = AP = A1

Since a subalgebra of acommutative semisimple algebra is itself semisimple
we obtain, by using the theorem of Maschke, the following theorem.

Theorem 5. Assume that G, &2 is an abelian group association scheme and that
the field ¥ has characteristic p not dividing the group order. Then the Schur ring
is semisimple.

We would like to mention that in the non-abelian case this theorem is not
true. For istance, the Schur ring of the group association scheme for the Frobenius
group of order 21 described in Section 3.2 is not semisimple over a field of
characteristic 2.
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We present a standard applications for froup association schemes of rank
T=3: ,
Here the defining Equation (6) can be written in the form

(9) )\%z(a—-c)1+(b—c))\2+cZg=nl+d)\2+c’y,
g€G
where
2 9=".
geG

If the odd prime p divides |G| and if b = c(modp) then the Equation .(9)
regarded as an equation over GF' (p) yelds:

(10) R A = n"T Ay + Ty

for a suitable integer x Wlth the help of Lemma 2 we derive the following
theorem.

Theorem 6. Assume that {1} U Az is not a subgroup of the abelian group
association scheme. Suppose that there is a prime a’zwsor p of |G| such that
b = ¢ (modp). Then p divides n.

, By using' Schur’s multlpher theorem and Theorem 5 the same equation
results in -

Theorem 7. Assume that the group association scheme is abelian. Suppose that
there is a prime divisor p of n such that b = ¢ (modp). Then p divides |G|.
Again, one can formulate these theorems for partial addition sets or

difference sets with —1 as multiplier. In the last case, for instance , one gets
the result

Theorem 8 (Ghinelli-Smit [2]). Assume that G is an abelian difference set with
—1 as multiplier. Then an odd prime divides |G| if and only if it divides n.

For partial addition sets in the non-abelian case only the following divisi-
bility condition is known
Theorem 9 (Léwe [5]). Suppose that a strongly regular graph with parameters
(v, k, A\, 1) admits a regular group G of automorphisms. Assume that the
discriminant § = (A — p)? 4+ 4 (k — p) is a square. Let € # {1} be a conjugacy
class in G. Then :

2V/§ divides (%%—1 + v(()\ — ) — \/5))
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This result is also the base for studying regular groups on generalized
quadrangles (compare Ghinelli-Smit [3]).

6. A Fundamental Problem in Finite Geometry and the Theorem of Burn-
side.

We conclude our outline with a very short proof of Burnside’s theorem.
Apart from the fact that a transitive group of prime degree leads to an abelian
group association scheme the main idea of the argument has its roots in a

6.1 The Problem '

Let A denote a finite affine plane of order n and let A be a set of n points.
A basic problem is to identify this subset as a line provided certain properties
are fulfilled. In fact, a natural condition is the assumption that the set of lines
carrying at least two points of A does not have many slopes (a slope is a point at
infinity). We speak of these points as the slopes of A. In particular, we have the
following conjecture ' ' ‘

Conjecture 3. Let A be an affine plane of prime order p and let A be a set of p
points with at most (p — 1) /2 slopes. Then A is a line.

The answer to this problem turns out to be of fundamental importance in
a variety of problems. In the case of a desarguessian plane &/ = AG (2, p) this
conjecture is true and easily proved with the help of

Theorem 10 (Rédei [10]). Let f : GF (p) — GF (p) be a function such that
its difference quotient takes-at most (p — 1)/2 values. Then f(z) = ax + b for
suitable elements a,b € GF (p). -

For completeness we sketch here the short proof of Lovasz and Schrijver
[7]: denote by U the set of values of the difference quotient of f. In the spirit of
Fourier transforms we look at the polynomial '

(11) fi@) =Y (ey—f@)y

YyEGF(p)

forj > 1.
Since the equation zy; — f(y1) = xy2 — f(y2) is equivalent to

_ fw) — fw)
Y1 — Y2
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we conclude that f7(z) = 0 for all z ¢ U provided that j < p — 2. Certainly
fj’-k has degree smaller then j for 1 < 7 < p — 2 and consequentely f]’-“ = ( for
1<j<(p-1)/2
It-is well known that each function f on GF (p) can be represented as a
polynomial

fl@)=co+ciz+ -+ cqz?

of degree d < p—1. Assuming that f is not linear we have that d > 2. Moreover,
we may assume that f(0) = 0, which forces ¢y = 0. Let p — 1 = ad + b with
a>0and 0 < b < d. It follows from d > 2 that a + b < (p — 1)/2, hence

oty = 0. Now a straightforward computation of. the coefficient z° in f} +b
yields a contradiction:

O=(a:b> > e

YEGF (p)

a+b a,. a a, .a
-(*7)) T e

YEGF (p)

a+b o e

yEGF (p)
a+b\ ,
= — b Cd
6.2 The Proof.

Now let G be transitive subgroup of the symmetric group .S, on p letters. Since
p divides |G| and p? does not divide S, we deduce that G contains a p-Sylow
subgroup P of order p. Clearly P must act sharply transitive on the point set.
Hence Section 3.1 applies. We identify the set of points with P and then P itself
with the additive group of GF (p). Hence P consists of all the permutations of

the form x — z + b.
Let A; = {0}, A,,..., A, be the group association scheme on P induced

by the action of the stabilizer Gy. Assuming that G does not act doubly
transitively we obtain 7 > 3. By Schur’s multiplier theorem we conclude that
the permutations

T — azx

for a # 0 permute the components of the partition. In other words, the
multiplicative group GF'(p)* of GF (p) acts on the set of components. Moreover,
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since GF' (p)* is transitive on GF (p) \ {0} we see immediately that this group
is transitive on the components A; for 7 > 2. But then it follows that there is a
subgroup U (the stabilizer of this action) of GF (p)* such that the components
A; for i > 2 are the cosets of U in GF' (p)*. Moreover, by our assumption we
have |[U| < (p—1)/2.

From Section 3.1 we know that each permutation g € Gy as a permutation of
G F (p) is an automorphism of the group association scheme. Hence the relation
x — y € aU is equivalent to g(z) — g(y) € aU. Thus we obtain

g(z) — g(y) cU
T —y

for all z # y. Since g(0) = 0 the theorem of Rédei implies then that g(z) = az
for a suitable a € GF' (p), which proves the theorem of Burnside.
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