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RECENT RESULTS ON THE EMBEDDING OF LATIN
SQUARES AND RELATED STRUCTURES,
CYCLE SYSTEMS AND GRAPH DESIGNS

CHRIS A. RODGER

1. Introduction.

The purpose of this paper is to give a survey of recent results on the
embedding of latin squares and related structures, cycle systems and other graph
designs, and to give some understanding of the techniques that have led to these
developments.

A (partial) latin square of order n on the symbols {1,...,t} isann x n
array in which each cell contains (at most) one symbol and each symbol occurs
(at most) once in each row and column.A partial latin square L of order n is
embedded in a latin square 1" of order v if for each cell (4, 7) of L that contains
a symbol k, cell (¢, ) of T also contains k. An r X s incomplete latin rectangle
is an r x s array in which each cell contains one symbol and each symbol occurs
at most once in each row and column.

The embedding of partial latin squares has a long and celebrated history,
attracting the attention of such mathematicians as Marshall Hall, Herb Ryser,
Trevor Evans, Allan Cruse, Anthony Hilton and Lars Andersen. In most cases,
these efforts have resulted in best possible theorems. For example, Hall [11]
found that every 7 x n incomplete latin rectangle on the symbols {1,...,n}
can be embedded in a latin square of order n, and Evans [10] showed that every
partial latin square of order n on the symbols {1,2,...,n} can be embedded in
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a latin square of order ¢, for any ¢ > 2n (and this is "’best possible” in the sense
that if 1 < n < ¢ < 2n, there exists a partial latin square of order n that cannot
be embedded in a latin square od order t). Both of these results follow qulckly
from the general result of Ryser [29]:

Theorem 1.1. The r X s incomplete latin rectangle R on the symbols
{1,2,...,t} can be embedded in a latin square of order t iff

R(i)>r+s—t for 1<i<t,

where R(i) is the number of cells in R containing symbol 3.

Cruse went on to consider symmetric and idempotent latin squares. A partial
latin square L is symmetric if whenever cell (3, J) contains symbol k, so does
cell (7,4), forall cells (7, j) in L, and is idempotent if cell (,%) contains symbol
¢ for all . Cruse [8] found necessary and sufficient conditions for the embedding
of a symmetric incomplete latin rectangle in a symmetric latin square, providing
a beautiful companion theorem to that of Ryser. As a corollary, he proved the
following.

Theorem 1.2. Every partial symmetric idempotent latin square of order n on
the symbols {1, ...,t} can be embedded in a symmetric idempotent latin square
of order t, for all odd integers t, t > 2n + 1.

Again, this is a best possible theorem in the same sense as the theorem of
Evans. Notice that since each symbol occurs once on the diagonal (idempotent)
and an even number of times off the diagonal (symmetric), ¢ must be odd.
(When we consider the embedding of symmetric idempotent groupoids in the
next section, having ¢ odd will not be necessary.)

The last theorem in this sequence of embeddings of latin squares obtained a
companion to Theorem 1.1 for idempotent latin squares when Andersen, Hilton
and Rogers [3] proved the following result.

Theorem 1.3. Every partial idempotent latin square L of order n onthe symbols
{1,...,n} can be embedded in an idempotent latin square of order t, for all
t>2n+ 1.

This result was subsequently improved by Rodger [24] to allow L to be
defined on the symbols {1, ...,¢}. However, the idempotent version of Ryser’s
Theorem is yet to be proved. Indeed, proving such a theorem is likely to be very
difficult because it has been shown [4] that the arrangement of the symbols within
the incomplete latin rectangle can determine whether or not it can be embedded
(so conditions on the number of times each symbol occurs are not sufficient).
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In Section 2, recent generalizations of Theorems 1.1, 1.2 and 1.3 to
embeddings of partial groupoids are described. (A (partial) groupoid of order n
on the symbols {1,2,...,t} is an n X n array in which each cell contains (at
most) one symbol. A groupoid is row (column) latin if each symbol appears at
most once in each row (column).) In Section 3, these generalizations are used
to obtain smallest known embeddings for partial cycle systems of odd lenght,
a problem which itself has a long history, but we leave the description of such
results until then. Section 4 considers the embedding of (complete) cycle systems,
and finally Section 5 uses the results of Section 2 to find small embedding for a

class of partial graph designs.

2. Embedding partial groupoids.

For the applications described in Section 3 and 5, it is crucial to be able to
find a partial latin square L of order ¢ in which the following are all specified:

(a) the cells which are to be empty;
(b) the symbols that are to be missing from each row;

and
(c) the symbols that are to be missing from each column.

Fortunately, the cells required to be empty occur in a subsquare of order n in L.
But filling these cells with symbols that are to be missing from the corresponding
rows and columns of L and thereby forming a partial latin square S is often
impossible. (If it were possible, S could then be embedded in a latin square
using the classical embedding results described in Section. 1 and the entries in
S removed to produce the desired objective, L.) Apart from being a pleasing
generalization in its own right, itis with this application in mind that the following
definition was made by Lindner and Rodger [16].

An r x s patterned hole on the symbols {1,2,...,t} is an ordered triple
(H, R,C) where H is a subset of the cells of an r x s array, and R and C are
partial 7 X s groupoids on the symbols {1, 2, ..., ¢} that are row latin and column
latin respectively, R(¢) = C(3) for 1 < ¢ < ¢, and in which the occupied cells
are precisely the cells of H. A patterned hole is idempotent if for 1 < ¢ < n, cell
(i,7) € H and contains symbol 5 in both R and C'. A patterned hole of order n

is an n x n patterned hole.
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Example 2.1.
1,235 111123
rR=|1[2]3]|5 and C = 2 | 2156
5|131|6 3138
2171814 5(5|714

(H, R, C) is an idempotent patterned hole of order 4, where H is the set of
cells occupied by symbols in R(or in C).

Let P,(H) be a partial latin square of order z in which the empty cells are
precisely the cells in H, and let P;(R) or P,(C) be the groupoid obtained
from P, (H) by filling the empty cells of P,(H) with the symbols in the
corresponding cells in R or C respectively. We say that the patterned hole
(H, R, C) is embedded in P,(H) if P,(R) is row latin and P, (C) is column
latin.

Example 2.2.

8|7]6]4

71486
4 21817
| l6|1]5]3
8|716|1(5]3]4]2
3(8|4|7(1/6]2]5
64853271
716(1|2]4]|5[3]8

The patterned hole (H, R, C) of Example 2.1 is embedded in this partial latin
square.

Clearly this definition gives us the structure we need to find a latin square
L satisfyng properties (a), (b) and (c). All that remains is to be able to embed
(H, R, C) in apartial latin square L. It turns out that we can obtain the analogues
of Theorems 1.1, 1.2 and 1.3, as the following results show.
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Theorem 2.3. [15] The r x s patterned hole (H, R, C) with | H| = rs can be
embedded in a partial latin square of order t iff R(i) = C(i) > r + s — t for
1 <1< n.

Just as Evan’s Theorem can be deduced from Theorem 1.1, the following
follows immediately from Theorem 2.3.

Corollary 2.4. The patterned hole (H, R, C) of order n can be embedded in a
partial latin square P,(H) of order t for all t > 2n.

A patterned hole (H, R, C) is symmetric if C = RT. The generalization
of Cruse’s Theorem 1.2 now allows for the size of the containing latin square to
be even. (See also [1], where Lars Andersen defined the less general notion of

an externally symmetric embedding.)

Theorem 2.5. [16]) Every symmetric idempotent patterned hole (H, R, RT) of
order n on the symbols {1,2,...,t} can be embedded in a partial symmetric

idempotent latin square P,(H) of order t, for any t > 2n + 1, providing

R(i) = t (mod2) for 1<i1<n
b= t+1 (mod2) for n+1<:1<t.

(Remark. In the case of an idempotent embedding, instead of requiring that the
empty cells of P;(H) be precisely the cells in H, we modify the definition of
embedding (H, R, C) so that the diagonal cells are precisely the cells in H that
contain symbols in P,(H).)

Example 2.6. The idempotent symmetric patterned hole with

12| |8
r—|1]2]3]5
2134
71624

is embedded in the partial symmetric idempotent latin square
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1 6 714135

2 8(7]4]6
6 3 18|57
I - 413|581
718(1]3[5[2|6]4
41718526113
314(5(8(6(1]7]2
516[7|1]4(3]2]8

Note that it is impossible to complete L to a symmetric idempotent latin square,
s0 it is not possible to use Cruse’s theorems to obtain L.

Finally, we obtain the analogue of the Andersen, Hilton and Rodger theorem,
Theorem 1.3 (see also [25], where Rodger obtained a slightly more general
result).

Theorem 2.7. [17] An idempotent patterned hole (H, R, C) of order n on the
symbols {1,2,...,n} can be embedded in a partial idempotent latin square of
order t, forall t > 2n + 1.

3. Embedding partial odd cycle systems.

An m-cycle is a graph with vertex set (vg,v1,...,vn-1) and edge set
{{vs,vi+1}|% € Z,»}, reducing the subscript modulo m. An m-cycle system of
a graph G is an ordered pair (V(G), C), where C is a set of m-cycles defined
on vertices in V' (G) that form a partition of the edges of G. An m-cycle system
of order n is an m-cycle system of K,,. A partial m-cycle system is an m-cycle
system of a subgraph of K,,. A partial m-cycle system (V, P) is embedded in’
an m-cycle system (W,C) if VC W and P C C.

The embedding of partial m-cycle systems has a long history in the case
when m = 3 (3-cycle systems are Steiner triple systems). After several earlier
results [13, 32, 33], the best embedding to date is by Andersen, Hilton and
Mendelsohn [2] who showed that any partial Steiner triple system of order n can
be embedded in a Steiner triple system of order v, forany v > 4n+1,v =1 or
3 (mod 6).

More recently, the embedding for partial m-cycle systems has been consid-
ered in general. Some remarks about embedding partial m-cycle systems when
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m is even are made in the last section of this survey; but the results from Section
2 are used when m is odd, so we focus on that here. Therefore, assume that m is
odd. The embedding rely on the following construction for m-cycle systems (we
give the construction formally at first, then proceed with an informal discussion

of it).

The Construction (of odd-cyéle systems).

Construct an m-cycle system (Zzs41 X Z.,, C) as follows:

(1) For each a € Zgs41, let ({a} X Z,,,C,) be an m-cycle system of order
m(this is just a hamiltonian decomposition of K,,) and let C, C C
and
(2) let (Zgs41,0) be asymmetric idempotent quasigroup, and for each {a, b} C
Zyst+1,a # blet cqp be the m-cycle defined by

(((a,0), (b,1), (@, =1), (b,2),..., (b, (m = 1)/4),
(aob,—(m —1)/4),(a,(m —1)/4),(b,—(m —1)/4 + 1),
...y (0,0)) if m=1(mod4)

** 7 ((a,0), (b,1), (a,—1), (b,2), ..., (a, —(m — 3)/4),
(aob,(m+1)/4),(b,—(m — 3)/4), (a, (m + 1)/4 — 1),
\ .., (,0)) if m=3(mod4),

N

where each second component is reduced modulo m. Let ¢, 3 ; be defined

by adding i (modulo m) to the second component of eéach vertex in Ca,b-

Then let {cqp.; |% € Zm,{a,b} C Zos+1} C C.

Clearly the complicated part of this construction is part (2) (see Figure 1).

If we think of the vertex (a, j) as ”being in column a and on level 57, then
two vertices can be at most |m /2] levels apart, modulo m. The set of m-cycles
{cab,; | € Z, } uses each edge joining vertices in columns a and b that are less
than |m/2] levels apart, and uses each edge joining vertices in columns @ and b
to vertices in column a o b that are exactly |m /2] levels apart. So as we let @ and
b range over all 2-element subsets of Zy,41, we consider each pair of columns
in turn, so every edge joining vertices in different columns is used in an m-
cycle. Therefore, together with the m-cycles in (1) that contain the edges joining
vertices that are in the same column, an m-cycle system of order m (2s + 1) is
produced. The first small embedding for partial m-cycle systems [21] used this
construction by attempting to define a partial symmetric idempotent latin square
to represent the partial m-cycle system (V, P) as follows: for each m-cycle
(vo,V1y...,Um—1) € P, define cells (v;,v;41) and (v;41,v;) to contain symbol
Vit[m/2] (Vi+[m/2] is the vertex on the “opposite side” of the m-cycle).
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(m-1)/4

Figure 1: The m-cycle ¢, 5 = €450

Example 3.1. Let m = 5, and (V, P) = (Zs,{(0,1,2,3,4),(0,5,6,3,7)}).
Then (Zs, P) is represented by the following partial symmetric idempotent
groupoid.

03 213 6
3|1
4 05
1
4
517
716
6 9 7

As can be seen from this example, it is not a partial latin square that is
defined in this way, but is a partial groupoid (since here symbol 3-occurs twice
in row and column 1), so the construction appears to be of no use. However
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for certain types of cycle systems, known as |m/2|-perfect m-cycle systems,
defining a partial groupoid in this way does produce a partial latin square, and
then using The Construction, an embedding of a partial | m/2|-perfect m-cycle
system of order n in an m-cycle system of order (2n + 1) m is produced. It turns
out [21] that by adding many m-cycles and new vertices to the given partial
m-cycle system (V, P), and then using a mutually balanced set of m-cycles (see
[26] for further discussion on this), (V, P) can be "turned into” an | m /2| -perfect
partial m-cycle system, resulting in an embedding of an m-cycle system of order
m((m-2)n(n—1)+2n+1). |

The problem with this method is that it strives to represent (V, P) with a
partial latin square. However, with the results from Section 2 in hand, a closer
look at The Construction shows that using a groupoid to represent (V, P) works
exceptionally well, as we shall now see.

Given a partial m-cycle system (Z,,P) of order n, define a partial
idempotent groupoid R’ as follows:

(a) let cell (¢,1) to contain symbol ¢ for all 1 € V, and
(b) for each m-cycle (vo,v1,...,Vm-1) € Pletcells (v;,v;41) and (viy1,v;)

contain symbols v;4+; and v; respectively. (See Example 3.2.)

Clearly R is a row latin partial groupoid, and since each vertex has even
degree in G (where (V, P) is an m-cycle system of G), each symbol in V occurs
in an odd number of cells of R. We can now take a symmetric latin square L
of order n on the symbols n,n +1,...,2n — 1 and then fill each empty cell
(4,7) of R' with the symbol in cell (7, ) of L to form a row latin groupoid R’
in which R'(7) isodd if i € Z, andisevenifn <7 < 2n — 1.

Example 3.2. Using (Zs, P) = (Zs,{(0,1,2,3,4),(0,5,6,3,7)}) as defined
in Example 3.1, R is defined using (a) and (b) by .

01 4|5 7
01 |
1
R 4 6|7
3|4
0 3 7

(compare R with the partial groupoid defined in Example 3.1). Then with L
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defined below, we get R’ from R and L (the entries from R in R’ are in bold
typer).

9 10]|11]12|13|14|15 0[1]10{11|4|5]|14|7
10{11[12|13|14[15| 8 0|1]2/[12{13|14|15] 8
10{11(12]13]14|15| 8 | 9 10| 1 3 (14|15 89

7 —|11]12|13|14[15/ 8 | 910| p _|11]12]2|3|4|8|6|7
12|13[14|15| 8 | 9 |10[11 01314} 3| 4|9 |10|11
13{14[15| 8 | 9 [10| 11|12 0[14|15{ 8|9 |5]|6 |12
14|15 8 | 9 [10]11[12[13 14{15( 8 | 3 |10[ 5| 6 |13
15| 8 | 9|10|11[12]13|14 08|9|3|11[12]13]7

Now the patterned hole (H’,R',R'T) can be embedded in a partial
symmetric idempotent latin square of order 2n+ 1 using Theorem 2.5. Therefore
we have an embedding of the patterned hole (H, R, RT) in a partial symmetric
idempotent latin square 7'. Notice that

(a) theonlyempty cellsin T are the off-diagonal cells in R that contain symbols,
and | |
(b) symbol 7 is missing from row j of T
iff it occurs in row j of R
iff {4, 7} is an edge in an m-cycle in P.
So now suppose that we apply The Construction using 7', ignoring in step
(2) the pairs {a, b} C Zz,+1 for which cell (a, b) of T is empty. This produces a
partial m-cycle system (Zzy+1, P’). But which edges occur in m-cycles in P’?
As described in the informal discussion following the justification of The
Construction, all edges joining vertices in different columns a and b that are less
than |m/2] levels apart will occur in an m-cycle in P’ EXCEPT if cell (a, b)
is empty. And all edges joining vertices in columns a and b = a o z(a o z is the
symbol in cell (a, z) of T') that are |m /2] levels apart will occur in an m-cycle
in P’ EXCEPT if b does not occur in row a of T' (so there is no z such that
b occurs in cell (a, z) of T). But by (b). above, b is missing from row a of T
iff {a,b} is an edge in an m-cycle in P iff cell (a,b) of T is empty. Therefore
the ONLY edges that are not contained in m-cycles in P’ are the edges joining
vertices in columns a and b for all pairs {a, b} for which the edge {a, b} occurs
in an m-cycle of P. But these edges are easily placed in m-cycles by defining:
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(3) For each m-cycle (vg,vy,...,Vmn~1) in P, let (Z,,,®) be an idempotent
quasigroup and for each i, 5 € Z,, (including 7 = 7) place the m-cycle
((U07i)> (U1>j)) (’02,7:), ('037.7')7 SRR (vm~27j)7 (’Um—lyi ®.7)) inC.

So we obtain an m-cycle system (Zy,(2n+1) , C') by applying The Construc-
tion modified by using (2) only when cell (a,b) of T contains a symbol, and
adding (3).

This modification has the great advantage that if (vo, v1,v2,...,Vm—1) € P
then since (Z,,, ®) is idempotent, ((vp,0), (v1,0),..., (vm-1,0)) € C, so we
have the required embedding of (Z,, P) in (Zm2n+1), C). Therefore we have
the following result. .

Theorem 3.3. [16] Any partial m-cycle system of order n can be embedded in
an m-cycle system of order (2n + 1)m. '

While this embedding is very satisfying, itis a long way from a best possible
embedding. It is likely to be the case that any partial m-cycle system of order
n can be embedded in an m-cycle system of any admissible (admissible means
satisfies obvious numerical necessary conditions) order v > n(m + 1)/(m —
1) + 1 (see [26] and Section 4).

4. Embedding complete odd cycle systems.

It is worth briefly mentioning the problem of taking a (complete) m-
cycle system (V, P) of order n and showing that for all admissible values of
v > n(m+1)/(m—1)+1, (V, P) can be embedded in an m-cycle system
(W, C) of order v (v is admissible if v is odd, v > m and 2m divides v (v — 1)).
The fact that v cannot be less that n (m + 1)/(m — 1) + 1 is easy to see [26]
by observing that since m is odd, every m-cycle containing an edge joining a
vertex in V' to a vertex in W \ V must contain an edge joining two vertices in
W\ V; as there are n (v — n) edges joining vertices in V' to vertices in W\ V,
and as there are (v — n)(v —n — 1)/2 edges joining two vertices in W\ V', we
getn(v—n)/(m—-1)< (v-=n)v—-n-1)/2.

Doyen and Wilson [9] have obtained such a result for 3-cycle systems.
Theorem 4.1. Any 3-cycle system of order n can be embedded in a 3-cycle
system of order v > n for any v > 2n+ 1,v = 1 or 3 (mod 6).

Subsequently, another proof in the case where m = 3 was obtained by Stern
and Lenz [31]. Their proof made great use of a very useful lemma they proved that
showed that the graph G (D) with vertex set Z, and edge ser {{i,i+d}|d € D},
reducing sums modulo v, has a 1-factorization if their exists a d € D such taht
v/gcd{v, g} is even. For a survey of this technique, see [23].
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Very recently, Bryant and Rodger [5] have extended the Doyen-Wilson
Theorem to 5-cycle systems. :

Theorem 4.2, An‘y 5 -cyclé system of order n can be embedded in a 5-cycle of
order v > n, for any v > 3n/2 with v = 1 or 5 (mod 10).

It is likely that the technique used in this paper will generalize to larger
values of m. However, since it is not even known for what values of v m-cycle
systems exist, complete solutions of this problem seem very unlikely to be found
in the near future. ‘

5. Embedding partial K, \ Ko designs.

In this section we use the results of Section 2 to find small embedding of
another family of graphs. A graph is simple if it has no loops, and each pair of
vertices is joined by at most one edge. Let K, \ K,,—2 be the simple graph,
denoted by (a1, az, ..., am), with vertex set {a;,az,...,an} in which a; and
ay have degre m — 1, and {as, ..., am} are an independent set of vertices (or,
remove the edges joining vertices in {a3, aq,. .., a,, } from the edges in K,,).
For any simple graph G, let AG denote the multigraph in which two vertices are
joined by A edges if {u,v} € E(G), and otherwise u and v are not adjacent.

A K\ Kpm—2 design (P, B) of a multigraph G is a collection B of copies
of K., \ K —2, each defined on a subset of the vertices in P, such that each
edge of G occurs in exactly one copy of K, \ Kmm—2. A (partial) K, \ Krm—2
design of order n and of index A is a K, \ K, —2 design of (a subgraph of) AK,.
The embedding problem is again to show that any partial K, \ K,,—2 design od
order n and index A can be embedded in a K,,, \ K,,—2 design of order v and
index A, where v is as small as possible. (Of course, Richard Wilson has shown
[33] that any partial graph design can be finitely embedded, but finding a small
embedding remains a difficult problem in general.) As we will now see, we can
use the techinque described in Section 3 to obtain a small embedding.

The first step is to take the partial K, \ K,,—2 design (P, B) of order n
and of index A, say (P, B) is a K, \ K,,—2 design of the multigraph G, and to
sort the edges of G out into A sets Sy, So,...,S), such that for 1 < ¢ < A,

(a) the subgraph G; induced by the edges in S; is a simple graph,
and _ ‘
(b) each vertex in GG, has even degree.

Obtaining property (a) is simple: let {u, v} € E(GY}) iff v and v are joined
by at least ¢ edges in GG. Certainly G satisfies (a), but almost certainly doesn’t
satisfy (b)! However, it is not hard to add some extra vertices to P and some
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extra copies of K, \ K,,—2 to G} (these copies are added to B too) to make
sure that the resulting graph G; satisfies (a) and (b) (see [19] for details, where
2m — 4 + |n/2] vertices are added in thlS step). Let (P, B’) be the resulting

K. \ K2 design of the multigraph U G;.
i=1

The second step is to form A partial idempotent group01ds (P’,, o;) for
1 <4 < A as follows: :

(1) zo;z =z forall z € P/,
and
(2) if {z,y} € E(G;) then zo; y = y and y o1 = z, and no other cells of the
groupoids contain symbols (compare this to the formation of R in Section
3).

Clearly (P’,0;) = R; is arow latin partial groupoid. By (b) and (1) above,
each symbol in P’ occurs in an odd number of cells of (P’, o;), so the empty cells
of (P’,0;) can be filled with | P’| new symbols to form the row latin groupoid
R} (as R’ was formed from R in Section 3), and then Theorem 2.5 prov1des an
embeddm gof the patterned hole (H, R;, RT ) into a partial symmetric idempotent
latin square L on the symbols 0,1,...,¢ = 2| P’|. Note that

cell {a, b} of L is empty
(%) iff row @ of L is missing symbol b
iff {a,b} occurs in E(G;).

Thirdly, we can now define the containing K., \ K,,—2 design (W, C). If
m is even or odd then let W = {00} U (Zt X Zyy3 OF Zg X Zop—3 respectlvely
Define

(1) Foreach a € Zt, let ({oo} U ({a} X Zp—3),g(a)) or ({a} X Zm-3,g(a))
if m is even or odd respectively be a K, \ K,,_2 design of index /\ (such
designs do exist [19]), and let g(a) C C.

(2) For 1 < ¢ < A, if {a,b} does not occur in E(G;) then place
((a,5), (b,5),(@0i b,5 +1),(a0ib,j+2),...,(a0; b,j +m — 2)) in
C.

As in Section 3 when (3) was defined, the main point to notice here is that
by (%), any two vertices in columns a and b are joined by exactly A —m, ; edges
in copies of K, \ Ky, —2 defined in (2), where m,, ; is the number of graphs G;
that contain the edge {a, b}. So the edge {a, j), (b, k)) must still occur in m,

further copies of K, \ K,,~2. This is easily accomplished because Mg b is the
A
number of edges joining vertices a and b in [J G;, and we know that (P’, B’)
i=1
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isa K, \ K,,—2 design of l:\) G';; so we also define
1=1
(3) for each copy (a’b A2y ..y a’m) of Km \ Km—2 in B/’llet ((al)j)) ((1/2, k)a

(a3, j®k), (a4, j®Fk), ..., (am,j®k)) € C foreach j, k in Z,,_3 (possibly
J = k) and where (Zj,, -3, ®) is an idempotent quasigroup.
The embedding has now been achieved, since (Zz,,—3, ®) in (3) is idempo-

tent and so for each (a1, as,...,a,) € B, ((a1,0), (a2,0),..., (am,0)) €C.
This gives the following result.

Theorem 5.1. [19] Any partial K, \ K, design of order n and of index
A can be embedded in a K,, \ K,,—3 design of order v and index )\, where
v < Bn+4m —T7)2m - 3) + 1, and if m is odd and X = 1 then
v =(2n+1)(2m — 3).

(The improvement in the case where m is odd and A = 1 in Theorem 5.1
is because in G;, every vertex already has even degree, and so already satisfies
property (b).) o

One of the interesting features of this embedding technique is that the way
the edges in G are distributed among the graphs G4, ..., G, is unrestricted by
the actual copies of K, \ K,,—2 thatdefine G. One might hope that this freedom
can eventually be exploited to obtain an embedding of a partial K, design of
index Ap, (block design of block size 4 and index \;) in a K4 design of index
Az, where ). is not too big compared to ;. :

Concluding remarks.

So far in this survey, we have focused on the new results on embedding
patterned holes, and shown how one of these results, namely Theorem 2.5, has
led to vastly improved embedding for m-cycle systems when m is odd. The
same principles can be applied to obtain small embeddings of partial directed
m-cycle systems when m is odd [17] by using Theorem 2.7, on embedding
idempotent patterned holes, instead of Theorem 2.5. The embeddings of partial
m-cycle systems when m is even [20] are much simpler because of a result of
Dominique Sotteau [30] who found necessary and sufficient conditions for the
existence of an m-cycle system of K, j (the complete bipartite graph).

Finally we should mention that the embedding of partial cycle systems of
index A > 1 have also been considered. Again the case where m = 3 has quite a
history [6, 7, 22], with the best result to date being that a partial 3-cycle system of
order n and index A can be embedded in a 3-cycle system of order v and index A
for any admissible v > 2n + 1 if 4 divides X [12] and any admissible v > 4n+1
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otherwise [28]. For m > 3, the techniques described in Section 2,3 and 4 can
be used to obtain an embedding, where as in Section 4, the edges in the given
partial m-cycle system are divided up among A simple graphs in which each
vertex has even degree (so the graphs satisfy conditions (a) and (b) of Section
4). Again, when using this approach, the edges can be distributed among the A
graphs without ever worring about which copy of K, \ K,,~2 they belong to.
The embedding of a partial m-cycle system of order n and index A in an m-cycle
system of order (4n + 17)m and index X in [18] uses a generalization of the
techiniques used in [2], and has also been used to obtain small embeddings of
linear spaces into linear spaces with no lines of size 2 [27]. But that techmque is
another story, not to be described here! :

We conclude with a summary of the latest results concerning embeddings
of m-cycle systems, as indicated in the following table [18].

( Parity of m [ KnorDy ! Best Embedding | Conditions I Reference l
0Odd Undirected (4n + 17)m A>2andm >3 [18]
4n + 1 A # 0 (mod4) [2, 28]
andm =3
2n +1 A =0 (mod4) [12]
andm =3 ‘
2n+1)m A=1llandm >3 [16]
Odd Direct (2n+1)m A>lorm >3 [18]
In+1 A=landm =3 [25]
Even Undirected nm A even [18]
2nm +1 A > 3 and odd, or [18]
‘ A=1landm >4 '
‘x2n+2n A=landm =14 [14]
Even Directed nm A>landm > 8 [18]
nm+ 1 A>landm=6or [18]
A>2andm =4
~2n++v2n A=1landm =4 [17)
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