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M. D. S. CODES AND ARCS IN PROJECTIVE
SPACES: A SURVEY

JOSEPH A. THAS

Let C be a code of length k over an alphabet A of size ¢, ¢ > 2. Having
chosen m with 2 < m < k we impose the following condition on C': no
two words agree in as many as m positions. It then follows that | C| < ¢™.
If | C| = ¢™, then C is called a Maximum Distance Separable code (M.D.S.
code). A k-arc in PG (n,q) is a set K of k points with k > n + 1 such that
no n+ 1 points lie in a hyperplane. It can be shown that arcs and linear M.D.S.
codes are equivalent objects. Here we give a survey of important results on
k-arcs, in particular we survey the answers to three fundamental problems on
arcs posed by B. Segre in 1955.

1. M.D.S. codes.

1.1 M.D.S. codes.

Let C' be a code of lenght k over an alphabet A of size ¢, g > 2. In other words
C' is simply a set of (code) words where each word is a k-tuple over A. Having
chosen m with 2 < m < k we impose the following condition on C : no two
words in C agree in as many as m positions. It then follows that |C| < ¢™.
If |C| = ¢™, then C is called a Maximum Distance Separable code (=M.D.S.
code). There is a voluminous literature on the subject. We refer to MacWilliams
and Sloane [1977] for references as well as to the work of Maneri and Silverman
[1971] and to the book of Hill [1986]. MacWilliams and Sloane introduce their
chapter on M.D.S. codes as “one of the most fascinating in all of coding theory”.
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The Hamming distance between two code words = = (1, 3, ..., xy) and
Y = (¥1,92,...,¥x) is the number of indices i for which z;  v;; it is denoted
by d (z,y).

The minimum Hamming distance of C is defined by min (d (z,y) | z,y € C
and z # y) and denoted by d (C). If C is an M.D.S. code then the following
interesting equality holds (see for example Hill [1986]).

Theorem 1. For any M.D.S. code d(C) =k —m + 1.

One of the main problems concerning such codes is to maximize d (C), and
s0 k, for given m and g. Also, what is the structure of C in the optimal case?

1.2 The general case.
First, let m = 2. Then C gives a set of ¢ code words of lenght &, no two of

which agree in as many as 2 positions. It is easily seen that this is equivalent to
the existence of a net of order ¢ and degree k (see Dembowski [1968], Ryser
[1963]. It follows that £ < ¢ + 1, the case of equality corresponding to an affine
plane of order q. From this, by an inductive argument, the following result is

obtained.
Theorem 2. For any M.D.S. code k < g+ m — 1.

The case m = 3 and k = ¢ + 2 is equivalent to the existence of an affine
plane 7 of order g, q even, containing an elaborate system of hyperovals. For
all known examples the plane 7 is desarguesian and g = 2" (see Willems and
Thas [1983]). For m = 4 and k£ = ¢ + 3 one can only show that either q=2
or 36 divides g (see Bruen and Silverman [1983]), even though (presumably) no
examples with g > 2 exist. Accordingly, it seems that one cannot do much with
the problem in its present generality.

1.3 Linear M.D.S. codes.

Now the problem will be formulated for the case when C is linear, that is, for
the case that C' is a m-dimensional subspace of the k-dimensional vector space
V' (k, q) over GF (q).1It goes like this. Choose any basis for C and represent it as
am x k-matrix X over GF (q) of rank m. Then C' is M.D.S. if and only if every
set of m columns of X is linearly independent. One can multiply the columns of
X by non-zero scalars and still preserve the desired property. Therefore, regard
the columns of X as points py, pa, . . ., px of PG (m—1, q). From what preceeds
it follows that C' is M.D.S. if and only if no m points of {p;,ps,--- , Dk } lie in
a hyperplane.

1.4 Linear M.D.S. codes and k-arcs.

A k-arcin PG (n,q) is a set K of k points with £ > n + 1 such thatno n + 1
points lie in a hyperplane. By 1.3 we have the following fundamental result.
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Theorem 3. Linear M.D.S. codes and arcs are equivalen objects.

Hence all results on arcs can be translated in terms of linear M.D.S. codes,
and conversaly.

2. k-arcs, normal rational curves and generalized Reed-Solomon codes.

2.1 Definition.
An arc K is complete if it is not properly contained in a larger arc. Otherwise, if
K U {z} is an arc for some point z of PG (n, q) we say that = extends K.

A normal rational curve of PG (n,q) is any set of points in PG (n,q)
which is projectively equivalent to {(t",t""!,...,t,1) | t € GF(¢)} U
{(1,0,...,0,0)}. Clearly any normal rational curve contains ¢ + 1 points. A
normal rational curve of PG (2, q) is an irreducible conic; a normal rational
curve of PG (3,q) is a twisted cubic. It is well-known that any (n + 3)-arc
of PG (n,q) is contained in a unique normal rational curve of this space (see
Hirschfeld [1985]). For ¢ > n + 1, the osculating hyperplane of the normal ra-
tional curve C at the point z € C'is the unique hyperplane through z intersecting
C' at z with multiplicity n.

2.2 Generalized Reed-Solomon codes.
A linear code C over GF (q) is called a generalized Reed-Solomon (GRS) code

if it is represented by a matrix of the form

Here t;,%,,...,% are distinct elements of GF (q); v1, v, ...,V are nonzero
(not necessarily distinct) elements of GF (q). We define 0° = 1. If one adds an
extra column of the form (0,0,...,v)T, with v # 0, then the resulting linear

code is called a generalized doubly extended Reed-Solomon (GDRS) code. 1t is
well-known that GRS codes and GDRS codes are M.D.S. codes. From the form
of the matrices immediately follows that each corresponding arc is a subset of a
normal rational curve. For more details we refer to Seroussi and Roth [1986].

2.3 The three problems of B. Segre.
In 1955 Segre posed the following three fundamental problems.

(a) For given n and ¢ what is the maximum value of k for which there exist
k-arcs in PG (n,q)?
(b) For whatvaluesof n and ¢, with ¢ > n+1,isevery (¢+1)-arcof PG (n, q)

a normal rational curve?
(c) For givenn and g, with ¢ > n+ 1, what are the values of & for which every

k-arc of PG (n,q) is contained in a (g + 1)-arc of this space?
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3. k-arcsin PG (2,q).

3.1 Ovals and hyperovals. :

Let K be a k-arc of PG (2,q). Then clearly k < ¢ + 2. By Bose [1947], for
q odd, k < g + 1. Further, any irreducible conic of PG (2,q) is a (¢ + 1)-arc.
It can be shown that each (q + 1)-arc K of PG (2,q),q even, extends to a
(g + 2)-arc K U {z} (see e.g. Hirschfeld [1979], p. 165); the point x, which is
uniquely defined by K, is called the kernel or nucleus of K. The (q + 1)-arcs
of PG (2,q) are called ovals; the (q + 2)-arcs of PG (2, ¢), g even, are called
complete ovals or hyperovals.

The following celebrated theorem is due to Segre [1955a].

Theorem 4. In PG (2,q),q odd, every oval is an irreducible conic.

Let K U {z} be a hyperoval in PG (2, q), q even, with K an irreducible
conic. If y € K, then (K \ {y}) U {z} = K’ is an oval of PG (2,¢). Clearly
| KN K'| = q.So for q > 4 the oval K’ cannot be an irreducible conic. Hence
for ¢ > 8, g even, the plane PG (2,q) always contains ovals which are not
irreducible conics. It is easy to show that for g € {2,4} any oval of PG (2, q) is
an irreducible conic. By Segre ([1957], [1962]), each hyperoval of PG (2,8) is
the union of a conic and its nucleus, and in PG (2,2") with h = 5and h > 7
there exist hyperovals not containing a conic as a subset. In [1958] Lunelli and
Sce have shown that in PG (2,16) there is a hyperoval which is not the union
of a conic and its nucleus; in [1991] a similar result for PG (2,64) was shown
by Penttila and Pinneri.

3.2 The known hyperovals of PG (2,q), ¢ = 2".
Let D (k), with k € N\ {0}, be the pointset

{(0,1,0),(0,0,1)} U {(1,¢,t*) | teGF(q)}.

Now we list all known hyperovals of PG (2, q), ¢ even.

(@) D(2™), with (m, k) = 1; these are due to Segre [1957]. Note that D (2)
gives a conic union its nucleus.

(b) D (6), with h odd; these are also due to Segre [1962]..

(c) Let h be odd, h > 3. Define two automorphisms z — z° and z — 7 of
GF (q) as follows:

o= 2(h+1)/2,

_ fom if h=dm —1
YTV 28m+l if h=dm+1.
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(e)
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Then it was shown by Glynn [1983] that D (0 + +) and D (30 + 4) are
hyperovals.

Now follows a description by Glynn [1983] of the hyperoval O of Lunelli
and Sce [1958]. Consider in PG (2, 16) the cubics C and C’ with equations
X3+ X34+ X3 +dXoX1Xe = 0and X§ + X7 + X3 +d*Xo X1 X, =0,
where d € GF (16),d> =1landd # 1. Then O = (CUC")\ (CNC").

Let h be odd. Define § : GF (q) — GF (q) by

51z xt/8 4 /2 4 25/6,
Then Payne [1985] has shown that
D (5) ={(0,1,0),(0,0,)} U{L,t,¢°) | teGF(q)}

is a hyperoval of PG (2,q). :
Next we describe the hyperovals of Cherowitzo [1986]. Let h = 2s + 1,

23+1

oc:GF(q) > GF(g), zr=z
¢:GF(q) = GF(q), z~ 1z +z7t% 37+,

Then D () = {(0,1,0),(0,0,1)} U {(1,t,t) | t € GF(q)} is a
hyperoval for h < 15. It does not belong to the previous classes for
he{5,7,9,11,13,15}. '

Finally O’Keefe and Penttila [19**] discovered a new hyperoval on
PG (2, 32), Pentilla and Pinneri [1991] found two hyperovals in PG (2, 64)
which are not the union of a conic and its nucleus, and Pentilla and Royle
[1991] constructed a third one in PG (2, 64).

Note that the classes (a), (b), (c), (e) sometimes overlap for small values of g,
but they are distinct for large values.

3.3 Extendable arcs.
By an ingenious trick (the lemma of tangents, see 8.2.2 in leschfeld [1979]),

by generalizing the classical theorems of Menelaus and Ceva and by using
some fundamental theorems from algebraic geometry, Segre [1967] obtained
the following key result. In fact, the odd case is a slight improvement by Thas
[1987] of the original inequality of Segre.

Theorem 5. Assume that k > A (q) where

\(q) = q—+q+1 for q even
(@)=14- /4 +25/16 for q odd.
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Then

(a) for q even, any k-arc K is embedded in a hyperoval which is unique except
when q =k = 2,

(b) for q odd, any k-arc K is embedded in a unique conic.

In [1986] Fisher, Hirschfeld and Thas, and independently Boros and Szényi
[1986], construct complete (¢ — /g + 1)-arcs for ¢ a square and ¢ > 4; in fact
these arcs were already constructed in [1981] by Kestenband, but not recognized
to be complete. So for ¢ an even square and ¢ # 4 the bound of Segre is best
possible. These (¢ — /g + 1)-arcs, g even or odd, can be described as follows.
Let G be a cyclic group acting regularly on PG (2,¢),q square. Let G; be
the subgroup of order ¢ — /g + 1 of G. Then the orbits of G; are complete
(g — /g + 1)-arcs when ¢ > 9. Further, in the odd case the bound in Theorem
5 is certainly not best possible; also, examples show that the bound ¢ — /g + 1
does not work for ¢ an odd square (in PG (2, 9) there exists a complete 8-arc,
see Hirschfeld [1979]).

Further, for ¢ an odd power of a prime ,Voloch ([1990],[1991]) was able to
improve the bound in Theorem 5. ;

Theorem 6.
(a) Every k-arc K of PG (2,p),p an odd prime, with k > (44p + 40)/45, is
embedded in a unique conic.
(b) Every k-arc K of PG(2,q9),q = p*™t\.m > 1.p odd, with k >
q — /Pq/4+ 29p/16 + 1, is embedded in a unique conic.
(c) Every k-arc K of PG (2,q),q = 2°™*\m > 1, withk > ¢ — /2¢ + 2,
Is contained in a unique hyperoval

From Theorem 5 follows that for ¢ even any g-arc of PG (2, q) is contained
in a hyperoval, and that for ¢ odd, with ¢ > 41, any g-arc of PG (2,q) is
contained in a conic. The following theorem is due to Segre [1955b] (see also
Hirschfeld [1979],§8.6), but a short proof can be found in That [1987].

Theorem 7. Any g-arc of PG (2, q), q odd, is contained in a conic.

Finally from the machinery developed by Segre [1967] (see also §10.3 and
§10.4 of Hirschfeld [1979]) the following interesting result easily follows.

Theorem 8. /
(a) If g is even and k > (q + 2)/2 then K is contained in a unique complete
arc of PG (2,q);
(b) if qisodd and k > (2q + 4)/3 then K is contained in a unique complete
arc of PG (2, q).
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4. k-arcs in PG (3,q).

4.1 (¢ + 1)-arcs in PG (3, q).
For ¢ > 2 any twisted cubic of PG (3,q) isa (g + 1)-arc.

Theorem 9.
(a) (Segre [1955b]). For any k-arc of PG (3,q),qodd and q > 3,k < q+1;
any k-arc of PG (3, 3) has at most 5 points.
(b) (Casse [1969]). For any k-arc of PG (3,q),q evenand q > 2,k < g+ 1;
any k-arc of PG (3,2) has at most 5 points.

The following theorem gives the classification of all (¢ + 1)-arcs of
PG (3,9).

Theorem 10. :

(a) (Segre [1955b]). Any (q + 1)-arc of PG (3,q), q odd, is a twisted cubic.

(b) (Casse and Glynn [1982]). Every (¢ + 1)-arc of PG (3,q),q = 2", is
projectively equivalent to C = {(1,t,t%,t°*1) |t € GF (¢)} U {(0,0,0,1}
where e = 2™ and (m, h) = 1.

S~

4.2 Extendable arcs. '

In Bruen, Thas and Blokhuis [1988] the theory of Segre [1967] is generalized to
PG (3, ¢). The bounds obtained by these authors for g even were considerably
improved by Storme and Thas [19**a], but again using the fundamental ma-
chinery developed by Bruen, Thas and Blokhuis [1988]. For ¢ even, Storme and
Thas [19**a] obtained the following partial answer to Problem (c) of Segre (see
also Hirschfeld and Thas [1991], §27.7); part (b) was proved by Thas ([1968],
[1987]) using totally different techniques.

Theorem 11.
(a) Let K be a k-arc of PG (3,q),q evenand q # 2. Ifk > q — \/q/2+ 9/4,
then K can be completed to a (q + 1)-arc which is uniquely determined by
K.
(b) Let K be a k-arc of PG (3,q),q odd. If k > q — \/q/4 + 41/16, then K
is contained in a unique twisted cubic.

Finally, the following interesting result is due to Bruen, Thas and Blokhuis
[1988].

Theorem 12.
(a) Any k-arc K of PG (3,q),q even and k > (q + 4)/2, is contained in a
unique complete arc of PG (3, q). :
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( b)Any k-arc K of PG (3,q),q odd and k > (2q + 7)/3, is contained in a
unique complete arc of PG (3, q).

5. k-arcsin PG (n,q).

5.1 Solutions to the problems of Segre.
For ¢ > n any normal rational curve of PG (n,q) is a (¢ + 1)-arc.

Theorem 13. (Kaneta and Maruta [1989]). If every (q + 1)-arc of PG (n,q),
n > 3 and ¢ > n + 3, is a normal rational curve, then q + 1 is the maximum
value of k for which k-arcs exist in PG (n + 1,q).

Theorem 14. . |
(a) (Casse [1969]). For any k-arc of PG (4,q),q even and q > 4, there holds
k < q+1; any k-arc of either PG (4,2) or PG (4,4) has at most 6 points.
(b) (Segre [1955b]). For any k-arc of PG (4,q),q odd and q > 5, there hods
k < g+ 1; any k-arc of PG (4, 3) has at most 6 points.
(c) (Casse and Glynn [1984]). Any (q+1)-arc of PG (4,q), q even, is anormal
rational curve.
(d) (Kanetaand Maruta [1989]). For any k-arcof PG (5,q), qevenand q > 8,
there holds k < q + 1.

The following theorem by Thas ([1968], [1987]) gives an answer to the
problems of Segre, for g odd; see also Hirschfeld and Thas [1991], §27.6.

Theorem 185.
(a) For any k-arc of PG (n,q),q odd and q > (4n — 39/4)%,k < q+ 1.
(b) In PG (n,q), q odd and q > (4n — 23/4)?, every (q + 1)- arc is a normal
rational curve.
(c) In PG (n,q), q odd, every k-arcwithk > q—./q/4+n— 7/16 is contained
in one and only one normal rational curve of this space.

In Bruen, Thas and Blokhuis [1988] and Blokhuis, Bruen and Thas [1990]
the theory of Segre [1967] is generalized to PG (n, q). For ¢ even, the bounds
obtained in Bruen, Thas and Blokhuis. [1988] were considerably improved by
Storme and Thas [19**a], but again using the fundamental machinery developed
by Blokhuis, Bruen and Thas. See also Hirschfeld and Thas [1991], §27.7.

Theorem 16. (Storme and Thas [19**a]).

(a) In PG (n,q),n >4, qevenand q > (2n—11/2)?, the inequality k < q+1
holds for every k-arc K.

(b) In PG (n,q),n >4, qevenand q > (2n — 7/2)?, every (qg+ 1)-arcisa
normal rational curve.
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(c) Let K be a k-arc in PG(n,q),n > 4,q even, ¢ > 4 and k >
q¢—+/q/2+n—3/4. Then K lies in anormal rational curve C of PG (n, q).
Also, C is completely determined by K.

Finally, we mention the following interesting result which is due to
Blokhuis, Bruen and Thas [1990].

Theorem 17.

(a) Any k-arc K of PG (n,q), q even and k > (g + 2n — 2) /'2, is contained
in a unique complete arc of PG (n, q).

(b) Any k-arc K of PG (n,q), godd and k > (2q + 3n — 2)/3 is contained
in a unique complete arc of PG (n, q).

5.2 The non-classical 10-arc of PG (4,9).

By Theorem 15(b), in PG (4, q), with ¢ odd and ¢ > 107, every (¢ + 1)-arc is
a normal rational curve. In Glynn [1986] a 10-arc of PG (4,9) is constructed
which is not a normal rational curve. This 10-arc K consists of the following
points: (0,0,0,0,1) and (1,¢,t2 + mt5,¢3,¢%), with t € GF (9) and m a non-
square. Also, Glynn [1986] shows that, up to a projectivity, this non-classical
arc together with the normal rational curve are the only 10-arcs of PG (4,9).
Finally it is noted that the projection of Glynn’s arc K from the line p;p2, with
p1,p2 € K, onto a plane PG (2,9) skew to p;ps, is the unique complete 8-arc
of PG (2,9) (see also §14.7 in Hirschfeld [1979]). .

5.3 The nucleus or kernel of a normal rational curve, and (q + 2)-arcs in

PG (q~-2,9).
Theorems 18 and 19 of this section are taken from Thas [1969b]

Theorem 18. Letr C be a normal rational curve of PG (2° — 2, q), with ¢ = 2"
and h > s > 3. Then the intersection of the q + 1 osculating hyperplanes of C
is a PG (2°7! — 2,q). Also, each of the q + 1 tangents of the algebraic curve
C has a point in common with PG (2°~1 — 2, q). Finally, these q + 1 points of
PG (2571 — 2, q) form a normal rational curve C; of this space.

Definitions. The curve C; of Theorem 18 will be called the tangent curve of
C'. The tangent curve (C1); of Cy will also be denoted by C5, etc. The curve
Cs—2 is an irreducibile conic of PG (2, ¢). The nucleus of C,_, will be called
the nucleus or kernel of the normal rational curve C. :

Theorem 19. Let C be a normal rational curve of PG (q — 2, q), g = 2", with
nucleus x. Then C U {z} is a (g + 2)-arc of PG (q — 2,q).

Conjecture. For ¢ > n + 1(¢ + 2)-arcs in PG (n, q) are only possible for q
evenwithn=2o0rn =q-— 2. .
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6. The duality principle for k-arcs.

6.1 The duality principle.
This section is taken from Thas [1969a].
Let K be a k-arc of PG (n,q), n > 2 and k > n +4, and let K consist of

the points ,
pi(y(gz),yiz)), e ,yq({')) ,1=0,1,...,k—1.

Then each submatrix of order n + 1 of the £ X (n + 1)-matrix [y](z)} is non
singular. Consider now the n + 1 hyperplanes of PG (k — 1, q) with equations

3/]('O)XO + y§1)X1 +--+ y]('k_l)Xk—l =0, 7=0,1,...,n.

These hyperplanes are linearly independent, and so they intersect in a PG (k —
n — 2,q). Now take k — n — 1 linearly independent points of PG (k—1,q) in
this PG (k — n — 2,q):

qi(z(gi),zf),...,z,(il), t=0,1,....k—n—2.

Now consider the following & points of PG (k — n — 2, q):
p;(z§0),z§l),...,z](.k_n_z)) ,j=0,1,...,k—1.

Then it can be shown that each submatrix of order k —n — 1 of the k x (k—n—1)-
matrix [zJ(Z)J is non-singular. Hence {pj, pi, ..., p} } is a k-arc of PG (k —n —

2,q).
In particular, if

)= 5]

with I, 1, the identity matrix of ordern+1and Y a (k—n— 1) x (n+1)-matrix,

then one can put
] = [-7 henn]

Theorem 20. (The duality principle for k-arcs)
A k-arc of PG (n,q), n > 2 and k > n + 4, exists if and only if a k-arc
of PG (k — n — 2,q) exists. Further, for ¢ > max (n+2,k—n),n>2and

k>n+4,
number of k-arcs of PG (n, q)

number of k-arcs of PG (k —n — 2,q) B
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_ number of normal rational curves of PG (n, q)
" number of normal rational curves of PG(k—n—-2,q)

6.2 Applications.
This duality can be applied onto the results of the preceding sections. Two

examples will be given:

(1) Since (g + 2)-arcs exist in PG (2,q), q even, (g + 2)-arcs also exist in
PG (¢ -2,9).
(i1) Duality applied to Theorem 16 gives:
(@) In PG (n,q),q—4>n>qg—./q/2—11/4and q¢ = 2", every k-arc
K satisfies k < g+ 1.
(b) In PG(n,q), ¢ —52>2n > ¢q—.,/q/2—11/4 and ¢ = 2", every
(g + 1)-arc is a normal rational curve.
(c) Let K be a k-arcin PG (n,q),n > q—/q/2—11/4,q=2" h > 2
and k > n+6. Then K lies in a normal rational curve C of PG (n, q).
Also, C' is completely determined by K.

6.3 Linear M.D.S. codes and duality.

Let K be a k-arc of PG (m — 1,q), with 3 < m < k — 3, and let K’
be a k-arc of PG (k — m — 1,q) obtained from K by duality. If C is the
linear M.D.S. code corresponding to K and C’ is the linear M.D.S. code
corresponding to K, then each vector of C is orthogonal to each vector of
C’. Since dimC’ = k —m = k —dim C, it follows that C’ = CL, thatis, C’ is
the dual code of C'. This also gives a proof, for 3 < m < k — 3, of the following
theorem; see also Hill [1986]..

Theorem 21. For 2 < m < k — 2 the dual of a linear M.D.S. code is again a
linear M.D.S. code.

7. The completeness of normal rational curves.

The following interesting theorem on normal rational curves is due to
Seroussi and Roth [1986].

Theorem 22. For n > 2, and n # 2 if q is even, a k-arc in PG (n,q) not
contained in a normal rational curve has at most (q + 2n — 1)/2 points in
common with a normal rational curve.

As a direct corollary we have the following result.
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Theorem 23. For geven,n >3, q>2n—4andqodd, n > 2, ¢ > 2n — 3,
any normal rational curve of PG (n, q) is complete.

Considerable improvements of Theorem 23 are contained in Storme and
Thas [19**b] and in Storme [19**]. In Storme [19**] the following theorem is
proved.

Theorem 24. Any normal rational curve of PG (n,q) is complete whenever q
is prime with ¢ > po or ¢ = p*"*1, h > 1, with p an odd prime and p > po(h).
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