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THE KINETIC AND DYNAMIC BEHAVIOUR
OF A SIMPLE GAS MODEL

LEIF ARKERYD (Géteborg)

The so called Lebowitz stick model of a gas is studied. We discuss
the particle level, as well as the gas kinetic, and gas dynamic levels
of the model, and consider how the three levels are connected. In
particular attention is given to the validation of the kinetic level from
a stochastic Liouville equation, and to the asymptotic behaviour of the
kinetic level.

1. Introduction.

The modelling of rarefied gases can be done at various levels, the
most popular ones being by particle dynamics, by gas dynamics and
by gas kinetics. However, the mathematical understanding of how to
connect those three levels is not very complete, at least not outside of
in some sense small data. In such a situation it is often interesting
to study special model systems to gain insight and hopefully also to
develop some fresh mathematical machinery applicable also to the
full problem. One such model with a certain interest for the present

context is the so called Lebowitz stick model. In comparison to other
“(velocity continuous) gas models in current use, the stick model is
amenable to more explicit and more transparent constructions, and
so is useful for a first concrete pencil test of mathematical ideas and
hypotheses. At the same time it gives an idea of the minimal level of
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complexity to expect for the general problem. On the other hand, in
the case to be treated it is far from interesting physics, due to the
here trivial collision mechanism.

We will first give a short introduction to the stick model, and
then discuss some properties on the kinetic level including the
connection to the hydrodynamic level. Towards the end the validation
of the kinetic equations from a stochastic Liouville description will
be treated.

The Lebowitz model treats a gas of sticks in the (z,y)-plane R?
[5]. Each stick is oriented along the y-axis, and moves in a straight
line with uniform velocity until it collides with another stick side to
side. Then the two sticks exchange their velocity component v, in the
z-direction. On the particle level for a gas of N sticks, the evolution
can e.g. be given by the time evolution of a density fV through the
Liouville equation in the 4N dimensional phase space with phase
variable zV = (2, 2,,...,2x), where z; = (25,5, vs,,vy;).

We will use a stochastic version of the Liouville equation and
take fV as a probability density, symmetric under particle exchange.
From the Liouville equation the BBGKY hierarchy is obtained by
integrating away all but the first j particles. At a cruder scaling
the evolution can be described by gas kinetics, and in still more
compressed terms by gas dynamics.

At the particle level, the last equation in the BBGKY hierarchy
is

(0r + v50, + v,0y) f¥ = constant Q2(fN),

where

Qz(fév)(zl) = /'vxl - vle{fév(xlsyl:vx-z’vyuxl’yl - 57" vm‘avyz’)

1

g =73

. 1
— N (21, 21,01 + 6, Vz,, Vy,) }drdvy, dvy, , — 5

Here 6 is the length of the stick. If f¥ is independent of the
y-variables, then by the symmetry and change of variables, .

/Qz(fév)dvﬁlh = O) (iat +Uxbax-)/flfvdvyl = 0.

This is the simplifying property of the stick model on the particle
level, that it partly decouples the equations of the hierarchy. On the
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kinetic level the Boltzmann equation for the sticks can similarly be
decoupled into two linear equations. We shall rely on the simplifying
property from now on and so drop the y-dependence, only considering
phase points zV = (21,22,...,22) With z; = (2, vz, vy;).

2. The kinetic level.

This section discusses the Boltzmann equation for the sticks, in
particular its asymptotic behaviour, and towards the end the problem
of the hydrodynamic limit. “

For simplicity let us carry out the discussion in the following
setting,

(O + v20:)f = Q(f, ), ~1 <2 < 1, (vs,vy) € IR, £ > 0.

Here Q(f,f) = Q2(f ® f), as defined in Section 1. As initial value
we take fli=o = fo, where (1+ lvs])fo € LY, and assume diffusive
reflexion at the boundary,

F(edy ey 09,8) = 6o () (og) | Tual =1, 1) ) e > O,

v, <0

f(.l,vm,vy,t) = ¢+(vx)¢+(vy=)/ v f (1,05, v, t)dv,dvy, vy <O.

ve>0

The inflow equals the outflow if

[;pi(vy'-)dvy =1, .[<

vz [dx (ver)dvs = 1.
+$0

As already mentioned an integration / dv, decouples the problem

into one linear problem for g = / fdvy, :_a'nd then with ¢ inserted into

0, another linear problem for f. If we write the equations in suitably
integrated forms, then both the stationary and time dependent g
and f cases can be solved by iteration, which produces monotone
sequences with uniformly bounded masses, hence convergence to
solutions. With the masses of the stationary solutions f. and ge
equal that of fo, it follows from the iteration procedure that ¢;: < Cgeo,
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if g0 < Cgeo and ¢ > 0. Using this and making an asymptotic analysis
when t — oo, in a joint work with N. Ianiro and L. Triolo we have
obtained the following result [3]. '

THEOREM If ¢, < C¢o., and supp vy is bounded, then the solution
f of the present initial boundary value problem satisfies

ft = fe in the weak * topology of measures, when t — co. .

Remark With boundary conditions of this generality, such results
are still an open question for the full Boltzman equation.

Our proof is based on measure theoretic arguments, and there
nonstandard arguments are often quite helpful both in making the
proofs more transparent and in discovering them in the first place.
Let me illustrate the first point on the step: g: — g strongly in L!.
For this it is enough to prove convergence in measure, since mass is
conserved. Let us first in a routine way discuss the inequality behind
the convergence. The condition g, <09 gives (gt — 9oo)? /9o € LL. So
by the equation we obtain

lat/\(gt - goo)zgc:oldxdv + /'va:(gt - goo’)zg;oldvx]le_
(1) '
/vm(yt — 900)’ 95 dvgpp=—y = 0.

Now for z = 1 the boundary condition is

(gt - goo')/goolle = ¢+ggol/ U.fc(g(la ’U;,,t) - gOO(U:/r:))dv:/L"vx_ < 0.
v,>0

Using Jensen’s inequality we get

vz 900 (ve) (g: — goo')zg;oz(”af)lxﬂ <

vz |4 (vx)/ v:/chO(lU;:‘)(gt - goo‘)zg;oz(v;;‘)[ledv;;'
vi>0 -
Thus by an integration with respect to v, < 0,

/U:cgoo(gt - goo')zg;ozlledvx > 0,
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with equality if and only if (g; — goo)/goe =constant= ¢;(¢). This is a
well known boundary entropy inequality for diffuse reflexion, and it

holds also at = —1. From here integrating (I) with respect to time
we get
(1) / dt/vxgoo(gt — 9e0) 95 z=1dvs < 00.

0

The nonstandard argument starts from the above computations
but using, instead of the reals R, an extended hyperreal line *R,
containing besides the reals also infinitesimals and their inverses,
infinite hyperreal numbers. We can go back and forth between the two
structures using Leibniz’ principle (transfer) meaning that whatever
is proved in one context holds true also in the other. In particular the
integral in (II) is finite in the nonstandard context, and so for ¢; < ¢,

t2
both infinite positive hyperreals, / dt / Vzgoo (gt — Joo) 2922 lo=1dvy & 0

(~ infinitesimally close to 0). Smce the inner integral is positive, it
is infinitesimal (Loeb dt) almost everywhere. The previous argument
using Jensen’s inequality implies that for some time dependent
constant ¢ (¢),

(9:(v2) = 90 (V)95 (v2)|o=1 = e1(2).
Analogously
(9:(ve) = goo(v2))9m (v)lo=—1 % c—1(2).

By the equation ¢ is constant along the characteristics, and so
(Loeb dt) a.e.

c1(t) = constant ¢ independent of t ~ c_,(2).

It follows that g; ~ (¢ +1)go, Which together with mass conserva-
tion implies ¢; ~ g.o, and this for arbitrary infinite ¢. The last result
in the standard context means that g; converges in measure to go,
when ¢t — oo.

Before turning to the validation problem, let me also mention

just one hydrodynamic limit result due to N. Ianiro and L. Triolo

1

[4]. They consider the stationary equation in the interval [——gi, ?]
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with the previous diffusive reflexion at the end points. If we write
foo = goo * h, and set ¢ = ez, then the equation for h in the ¢-variable
becomes

vllaqh = 6_1/|v971 = Vg, |g(v$-2')(h(q> vl‘z’vyl:) - h(‘]) Vzy vyli))dvi‘z’

with boundary values

h(—1,vg,vy) = Y_(vy), vy > 0,

h(1, vy, vy) = ¥4 (vy), v, < 0.

Since v, is only a kind of parameter, whereas v, behaves as a real
velocity in this equation, we should expect h to become independent
at least of v, in the hydrodynamic limit ¢ — 0. That is also what
happens at least when g., € L*.

THEOREM (Triolo, Ianiro [4]) k:(q,vz,vy) = ho(q, vy) + R (¢, Ve, vy),
where R. is a bounded family in L*°, and hy is linear,

ho(q,vy) = (Y4 (vy) — Y= (v9))a/2 + (P4 (vy) + - (vy))/2.

3. The validation problem.

The final result to be discussed concerns the validation problem
for the gas of sticks. We shall start from a stochastic version of
the Liouville equation without y-dependence, and prove that the
j-particle contractions in the BBGKY hierarchy converge to solutions
of the Boltzmann hierarchy. And the hierarchy solutions will be seen
to factorize when the initial values do. In particular the Boltzmann
equation is obtained in the limit of the 1l-particle BBGKY equation.
This is a report on joint work with S. Caprino and M. Pulvirenti [2],
and shows on the stick model some ideas from our study of a more
general one space dimensional validation situation.

As a first step let us -disk_:uss a suitable family of solutions for
the Liouville equation. Introduce the notation

Ni, N N o o
ft ﬁ(z ):ft (23'1 +tv:¢-i"vr1’,,vy1""°>mN+tv&'N’va’vyN‘)’



THE KINETIC AND DYNAMIC BEHAVIOUR,... 11

and

N N
Lftn(z ’): Z {f (Zla---,zi-—laxhvxkavyn“'azk—lyzka
1<i<k<N

Uiy Vyxs e vy ZN) = ftN(zN')}Iva:i — Vg, [6(2i — @)
We shall consider the stochastic Liouville equation given by

DifM =e(LfM)} (e=M/N), with fYo=7)elLl.

Here fV(PzV) = fY(2") (symmetry) and / fNdzN =1 (normal-

ization), and P belongs to P-the set of permutations of 1,...,N;
The problem is considered with z € R (and not as previously [-1, 1]).
Integrating out all but the first j particles, we get

thNIi = <‘5(LfN)n +e(N _J)(QJ+1fJ+1)

the j-th equation in the BBGKY hierarchy. Here L, the Liouville
collision operator only treats collisions between the j first particles,
and @ of Boltzmann type, collision between one of the particles 1, ...,
and one with a higher index. The solution of interest for N = 2 is

ftn(zz) = fo(2?) fort > 0, if (z; — a:z')/(vxgv—— Vp,) <0
(since 6(zq + tvy, — 22 —tvy,) =0 for ¢ > 0 in that case). If
ty = (:c1 - 22)/(Vg, — Vz,) > 0,

then o
FH2?) =fo(2%), t < to, FH(z?) = (1 =€) fo(H)+

EfO(xl-:vwaymmZ;'U:vgavyf): > tO)

and we define f! (:2) = fl _(2%) = fo(z?). It follows that for 0 < ¢ < 1,
positivity is conserved, L! norm, i.e. mass, is conserved, and L* norm
is non-increasing. o |

For N > 2 and 2V in a set of full measure in phase space, at any
time ¢ with collision for 2V, there is exactly one two-particle collision,
so existence of fV for N > 2 can be reduced to the N = 2 case. This
means that we can solve the Llouvﬂle equation, hence the BBGKY

hlerarchy for any N. T
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In a second step we discuss the convergence of the BBGKY
hierarchy to the Boltzmann hierarchy when N — co. It follows from
the above solution discussion that

M= BN, 0N PoY), Y Ap =1, t > 0.

Pe?P

Here the coefficients AL only depende on ¢V, vV but not on AR
This solution structure can be used to prove that, if

N N! = - ]
fo (= )—HfO(ZJ)
1

with f; € L with compact support (for simplicity, but weaker
conditions are possible) then for all ¥ and j

MY CHVI 1< T

So we can use weak L' compactness and conclude that there is
a subsequence (N;) of N, such that when & — o, then

it Ml converges weakly in L' to some f;:,t > 0,5 € N,

ij"ﬂ(zl,xl + 1(Va, — Vuy), Vyy Vys 5 23, . -+, 25, 1)
converges weakly in L},, to some L! function which in fact turns out
to be fn This covers the limit of all terms in the BBGKY hierarchy,
~ and we have proved

THEOREM The solution of the stochastic Liouville equation for
the Lebowitz stick model generates solutions to a BBGKY hierarchy,
which converge to L' solutions of the Boltzmann hierarchy. |

Remark For )\ small and for some types of physically more
realistic collision models, the analogous result can be proved in a L!
setting, just requiring finite mass, energy and entropy. In that case
there are no explicit solution formulas, and we have to rely entirely
on suitable a priori estimates (see [2]).

If f(z1,t) is a solution to the Boltmann equation for the sticks
with initial value f,, then the products

J
fjt(zj‘) = H f(Zk,t’), .7 € N)
k=1
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satisfy the Boltzmann hierarchy. So to prove that the solutions
of the BBGKY hierarchy converge to factorized solutions of the
Boltzmann hierarchy, we only have to prove uniqueness for the
Boltzmann hierarchy. Our approach is to exploit an equivalence
(due to Spohn) between the Boltzmann hierarchy and a statistical
Boltzmann equation, and then to prove uniqueness of the latter,
relying on good estimates for the deterministic Boltzmann equation.
This approach was previously developed in the space homogenous
case in a paper by S. Caprino, N. Ianiro and myself [1], and can be
used also for the space dependent stick situation, but for technical
reasons not yet for the more general one-dimensional gases referred
to above. "

THEOREM [2] Suppose f, € L?(R3?) has compact support and
mass one.
Then the Boltzmann hierarchy for the Lebowitz stick model with

J
initial values f;j(?,0) = H fo(zx) has a unique solution in L' N L*°,
k=1
and it factorizes also for t > 0. In particular the equation for fi in the
Boltzmann hierarchy is the deterministic Boltzmann equation for the

sticks.
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