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EVANESCENT WAVES AND DISCONTINUITIES
FRANCO BAMPI - CLARA ZORDAN (Genova)

An evanescent wave is a wave disturbance which travels along a
direction and attenuates along a different direction. Evanescent waves
are typically generated when a plane wave obliquely strikes a boundary
between two media possessing different material properties. A detailed
analysis of the problem of oblique incidence shows that plane waves
are completely determined by the knowledge of the so-called reflection
and transmission coefficients. On the contrary the properties of the
evanescent waves are summarized by the knowledge of two functions,
linearly determined by the amplitude of the incident wave, which
are to be chosen as the Hilbert transform of each other; in so doing
the evanescent wave exhibits the appropriate behavior at infinity.
A thorough comparison between discontinuity waves and evanescent
waves makes it evident that the usual information about discontinuities
does not suffice for calculating evanescent waves. This proves that the
oblique incidence problem does not admit a consistent answer within
the sole framework of discontinuity waves.

1. Discontinuity wave theory.

Since the pioneering work of Hadamard [1], the theory of
discontinuity wave propagation has become more and more popular
mainly because of the inherent mathematical rigor. Indeed, as
Truesdell pointed out in [2], although the study of wave propagation
casts light upon the nature of the material responses, nevertheless
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such a study is in general performed by confining the analysis to
the case of “small” disturbances. Frequently, the term “small” means
that the nonlinear effects are neglected and that wave propagation is
examined simply by considering harmonic solutions of the resulting
linear system. In so doing, we are in fact dealing with an approximate
problem, which fact is unsatisfactory both from the physical and the
mathematical point of view.

The fundamental idea underlying the discontinuity wave theory
is that of adopting a different concept of wave propagation in which
the disturbance is limited, rigorously, to a region of no volume at all,
namely a surface, but the disturbance itself may be of any amount
[2]. The resulting theory is intrinsically exact and mathematically
appealing: as a prominent consequence, nonlinearities do not represent
a problem at all and are embodied into the theory in a straightforward
manner. Apart from rigor, the difference in concept is great. While
in the theory of small disturbances the wave surface is assumed in
a special form, usually plane, and the disturbances themselves are
assumed to depart little from equilibrium, the discontinuities can be
represented by a smooth surface of any shape and the unperturbed
state of the material can be any we please.

As a significant example, Truesdell [2] mentions that the speed
¢ of propagation of disturbances in gases has the form

2 _ dp.

¢’ = 5

however, in the cases of small disturbances the unperturbed state
is constant and hence the density p and the speed c are constant,
whereas for discontinuity waves p need not be a constant thereby
rendering the speed ¢ a function of the state, namely of the density p
itself.

Finally it is worth mentioning that the derivation of the evolution
law for the amplitude of the jump along the bicharacteristics does
not represent a problem and can be done once for all under very
general assumptions [3].

Today, the theory of discontinuity wave propagation is considered
a powerfully tool applicable to a large class of problems belonging to
physical and engineering disciplines. In other words, such a theory
represents an interdisciplinary and efficient method for dealing
with theoretical and applied problems concerning the propagation of
disturbances. '
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However when this theory is applied to the problem of oblique
incidence on a boundary some unsuspected drawbacks and pitfalls
arise especially in connection with the generation of evanescent
waves.

2. Evanescent waves in a word.

An evanescent wave is essentially a wave disturbance which, while
traveling along a direction, attenuates along a different direction; an
outstanding example of evanescent wave is the celebrated Rayleigh
wave—see, e.g., [4, p. 220]. It is a remarkable result that, for
hyperbolic system, such two direction cannot be parallel [5]. Note
that most of the properties of evanescent waves do not depend
on the actual attenuation; accordingly, when the attenuation is not
relevant, harmonic exponential waves of this kind are referred to as
inkomogeneous waves in the literature—see; e.g., [6] and references
therein. So as to stress that attenuation is explicitly taken into
account, in accordance with [4, p. 204] we use the term “evanescent
wave”,

The relevance of evanescent waves to the problem of oblique
incidence of waves on an interface between to different media is
well known in the literature—see, e.g., [7]. Our purpose is that of
employing and re-elaborating this background material so as to solve
the oblique incidence problem in a closed, although formal, form under
the very general assumption that the governing equations constitute
a linear hyperbolic system of differential equations. As a conclusion ‘
we are able to prove that the oblique incidence problem does not
admit any solution within the sole framework of discontinuity wave
theory.

3. Plane traveling waves.

Consider a physical system whose behavior is described by the
following N linear hyperbolic differential equations
oU U U _

y A* =
+A ey + o 0,

W_*_A Oz

where A7, AY, and A* are constant N x N matrices. A plane wave,
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traveling along the direction n (n-n = 1) at speed ¢, is a solution of
the form
U=U(p),

where the phase ¢ is a function of time ¢ and space coordinates x of
the form
p(x,) =t —n-x/e.

Split the solution U(p) as the product of the amplitude #(¢) and
the polarization vector II, namely

U(p) = U(p)IL;

evidently such a decomposition is not unique. Then, on substituting
the ansatz U = U(y) into the linear system considered and on letting
n = (4 o v), we conclude that the propagation speeds are determined
by the algebraic equation

det |Ap, — cI| =0,

where I stands for the N dimensional identity matrix and A, =
pA®T + cAY + vA*. Meanwhile, the polarization vector is a solution to
the algebraic system o

| | (An — eI = 0.
Note that, in general, ¢ = ¢(n) and II = II(n).

It is worth noticing that the previous conditions formally coincide
with those relevant to the propagation of discontinuity waves thereby
confirming the well-known result that plane discontinuities (or
acceleration waves), plane shocks, and plane traveling waves possess
the same wave fronts. In this sense, studying the behavior of plane
waves is tantamount to studying the behavior of discontinuity waves.

4. The oblique incidence problem.

Suppose that the plane y = 0 is the boundary between two
different media: the first one occupies the lower half space y < 0 and
its behavior is described by the previous linear system, whereas the
second medium fills the upper half space y > 0 and is governed by
the linear system

o -, 0U | . 0U bt oU

51 + A B2 + A _‘53—/__}_ ’3_2—0,




EVANESCENT WAVES AND DISCONTINUITIES 19

where A%, AY, and A* are constant N x N matrices. Suppose also that
a plane wave, traveling into the lower medium along the direction n;
at speed c(ny), impinges on the boundary y = 0 thereby generating
reflected and transmitted waves.

As is well known [8,9], the problem of oblique incidence can
fully be analyzed by confining ourselves on the so-called plane of
incidence, namely the plane spanned by the normal to the interface
and the propagation direction of the incidence wave. Accordingly the
situation may be summarized as follows.

n; = (p1 01 0),

pr,o1 >0, pf+of=1.

Incident Wave:

U=t (t - M)H(m,m
C(-)UI; UI)

Reflected Waves r=1,...,p):

+ oRrY
UR:uR(t_w___>n
¢(pr, OR) (kx, %)

Transmitted Waves (tr=1,...,q):

~ ~ ] + oTy ~
UTzuT<t—-’éT—x———>n o).
C(#T,O'T) (NT T)

As is well known [9], determining the reflection-transmission
pattern consists in solving Snell’s law and in evaluating the amplitudes
of all the emergent waves.

In details, Snell’s law relies on a geometric analysis of the

problem and establishes that

F1__ _ __HR - HT
c(“l) G']f) C(JUR) O'R) 5(“'1‘7 O-T)

Since the quantity ¢ is subjected to the only constraint u? 4% = 1, the
reflection-transmission pattern is not unique. To restore uniqueness
we must impose the requirement of causality [8]; however the presence
of evanescent waves makes this point a bit subtle [10].
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On the other hand, the amplitude evaluation is dynamical in
nature and requires the knowledge of interfacial conditions. On
assuming that no fields are localized on the interface, we are
allowed to stipulate that the fields on both sides are connected by
the Rankine-Hugoniot conditions [11], which establish that, on the
boundary y = 0,

P q
AU+ Y AUR =Y AT,
R=1 T=1

or, explicitly,

P : q
Z AV (g, o) UR(p0) — Y AT, o) U™ (p0)
R=1 T=1

+ AYT(p1, o1) U (o) = 0;

note that, owing to Snell’s law, the argument of all amplitudes
coincide with the quantity ¢o =t — zpy/c(p1, o1).

5. Real waves and evanescent waves.

Suppose now that Snell’s law gives rise only to real values of
p subject to the condition p < 1; then we say that all the emergent
waves are real. On assuming that the propagation speeds are positive,
we must choose

URZ—\/l—/J%<O, GT=\/1—/L%>0.

Moreover, we must suppose that the algebraic system for determining
the amplitudes of the emergent waves admits a unique solution for
the p +¢ quantities «4® and %T. Note, however, that this is not the
case for grazing incidence in linear elastic crystals [12].

On the other hand, it often happen . .that Snell’s law gives
rise to values of ;4 which can be either greater than 1 or even
complex quantities [13]. In both cases o = \/1 — u? turns out to be
a complex quantity and the corresponding wave does not travel at
a characteristic speed [5]. The wave associated with these values is
called an “evanescent wave”.

For the sake of generality, suppose that the quantity x takes a
complex value. As an immediate consequence of the previous analysis
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the polarization vector, the Rankine-Hugoniot conditions, and hence
the wave amplitude involve complex quantities thereby rendering
their meaning not immediate. The main idea is that of exploiting
such formal complex solutions as a convenient tool for arriving at
the explicit (real) form of the evanescent solutions we are looking for.
The appearance of complex quantities can fruitfully be exploited.

To fix notation denote the real and imaginary part of a complex
quantity ¢ in accordance with the formula

Y=o+,  i=+V-1

As a consequence of Snell’s law, even when x and c(p,o) are
complex quantities it turns out that

#:-ﬁ—l—-:ﬁ—z—EIR;

c C1 Co

accordingly, the phase ¢ formally becomes

p=t-LLe_ay,

c1
where
o C101 + C202 ., €109 — €201
a=-—= 71 2 t 2L .2
c ¢y + ¢35 cy + ¢
Equivalently
' o =1—1Y,
where

T:i—ﬁ—l——z-—aly,
a1

Y = a2Yy.

The fact that the phase ¢ is a complex function is to be interpreted,
in term of real quantities, as the suggestion that evanescent-wave
solutions to the governing system are in fact functions of the two
variables 7 and Y. Hence, on assuming that U = U(r,Y"), substitution
into the original system yields

oU yoU _

AT—+4 A

or Y 0,



22 FRANCO BAMPI - CLARA ZORDAN

where

AT =1~ ——Ax —alAy
€1

AY = agAy .

So as to find a solution U(r,Y) to the previous system, we can
profitably use formally the presence of complex quantities in the
following way. Consider the complex column vector

ﬁ = U(T - ZY)H(/“a 0'),
where, in the present case,

H:H1+iH2,

U(T =71Y) = UL (7, Y) +ilUs(7,Y).
Explicitly, we can write
= (Z(l +2u2)(H1 ~+ an) = (L(1H1 — ugnz') + z(L(1H2 +u2H1i).

It is a straightforward matter to ascertain that, whatever function ¥
we choose, the real and 1mag1nary part of U separately satisfy the
system
,oU y U
A F’;— + A i
In view of the linearity of the differential system under consideration,
the general form of the solution is obtained as a superposition of the
real and imaginary part of the complex quantity U.
The last step in solving the problem of the oblique incidence is
that of calculating the amplitude of the emergent waves through the
use of the Rankine-Hugoniot conditions. Since

=0.

(? = (L(1H1 —UZHQ) + Z(U1H2 +u2H1;)

the Rankine-Hugoniot conditions split as

p q
D AYURTE - u3mE) — ST AV@TTT - UFAT) + At = o,
R=1 ' T=1
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P q

> AYUETE +URTIE) Y AY(UTTT + U1 = 0.

R=1 T=1
As the solution to the system of the Rankine-Hugoniot condition will
depend linearly on the amplitude &' of the incident wave, we set

UR = KRyt Ut = kTt

where the constants k® and kT are complex quantities. By substitution,
we arrive at the following algebraic system

P - q
S AY(IREY — IEER) — Y AY(ATk] — T5k3) + AT = 0,
R=1 T=1
P q L. .
> AY(TIZET + TITRS) — > AV(TITkT + 1Tk3) = 0,
R=1 T=1

which allows us to determine the 2(p +¢) quantities k¥, k%, kT, and
kY. We explicitly assume that the such a system admits a unique
solution. 7

Look once more at the Rankine-Hugoniot conditions. It is of
fundamental importance to realize that, whereas the real part of U
must explicitly depend on the amplitude U! of the incident wave,
the imaginary part of U satisfy a homogeneous Rankine-Hugoniot
equation, which loses track of the quantity «'. Hence the imaginary
part of U/ can be determined by means of an arbitrary function, say
VL. In conclusion, on defining the two functions

U = (ky + k) (UL + iUD),
V = (k1 +ik2)(V] +iV3),

in which the quantities k; and k. single out the relevant reflected
or transmitted wave, the general solution to the oblique-incidence
problem can be written as

U = (Uil — UsTTz) + (V11T 4+ Vo1IIy),

or
U= (U1 -+ Vz’)Hl —_ (uz - V1‘)H2.
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As a result the evanescent-wave solution depends not only on the
amplitude " of the incident wave but also on an arbitrary function
V! which will be chosen by imposing the regularity of the solution
itself. "

6. Making the solution an evanescent wave.

Observe first that the evanescent-wave solution is the real part
of a suitable complex N-dimensional column vector, precisely

U = R(U" -k,

where the values of the complex number k single out the specific
emergent wave. Therefore, the regularity of the solution, which must
be “evanescent” at “infinity” in the pertinent half space of definition,
is accounted for through the regularity of the complex quantity
U' — V1, as function of 7 — Y. Fortunately, problems of this kind are
already solved in the literature by having recourse to the Hilbert
transforms [14]. Specifically, the Hilbert transform g(z) of a function
f(z) € L*(—00,00) is defined as

1 < flx)

T Jeo X—2

P denoting a principal value at x = z. In [14, p. 128] it is proved the
following

THEOREM (Titchmarsh, 1937): Let » = z+iy and assume that ®(z)
is a complex function of the real variable z belonging to L%(—00,00).
Then ®(z) is the limit as z — = of an analytic function ®(z), regular
for y > 0, if and only if ®(z) = f(z) — ig(z), where g(z) is the Hilbert
transform of f(z). '

As an immediate consequence of this theorem the evanescent
wave solutions are regular functions provided that the arbitrary
function V! is chosen as the Hilbert transform of %!,
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7. A comparison between discontinuities and evanescent
waves.

This section is devoted to a detailed comparison between
discontinuities (D) and evanescent waves (E) in order to establish the
differences and the similarities between these two kinds of waves,
both of which are necessary for a consistent solution of the oblique
incidence problem.

PHASE:
D: the phase is real;
E: the phase is complex.

PHASE SPEED:

D: the phase speed is a characteristic speed;

E: if the speed c is real, the phase speed is less than or equal to a
characteristic speed [5].

WAVE FRONT:
D: only one distinguished plane:
the plane at constant phase ¢ = const;
E: two distinguished planes:
the plane at constant phase = = const,
the plane at constant amplitude Y = const.

AMPLITUDE OF THE INCIDENT WAVE;:
D: in the case of linear systems, the amplitude is unimportant;

E: the amplitude is of fundamental importance for evaluating the
form of the wave.

We are now in a position of drawing the conclusions which
follow from this work. Here we have examined a physical problem
where evanescent waves are of vital importance, namely the oblique
incidence of a plane wave on a boundary. Indeed, we have proved
that calculation of the amplitudes of the emergent waves requires
the account of possible evanescent waves. Owing to the equivalence
between plane waves and discontinuities, the same is true when the
incident wave is a discontinuity wave. Unfortunately, in this latter
case the discontinuity wave does not provide any information on the
amplitude ¢! of the associated plane wave; therefore it is not possible
to determine the explicit form of the possible emergent evanescent
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waves. Accordingly, the result is that such kind of problems cannot
be solved within the sole framework of discontinuity waves which, in
spite of being a very powerful approach to wave propagation, fail in
the problem of the oblique incidence.

8. Further remarks.

It is worth pointing out that the our approach can easily embody
the Stoneley problem [8], whose importance has been recognized
since a long time—see, e.g., [15] and reference therein. In fact the
Stoneley problem can be viewed as a problem of oblique incidence in
the special case when the incident wave has a vanishing amplitude.
With this interpretation, the relevant solution is assumed to be a
function of the form U = U(r,Y) where now

T=1— Az — oy, Y = asy.

Of course, this procedure does not guarantee that the Rankine-
Hugoniot conditions—with «' = 0—are solvable; imposing their
solvability results in suitable conditions between the real quantities
A, a1, and «, which are exactly the so-called Stoneley conditions.

Finally we briefly discuss the influence of nonlinearities on the
determination of evanescent waves. Indeed, unlike the case of a single
discontinuity and the case of normal incidence, nonlinearities strongly
affect the problem of oblique incidence. In essence, nonlinearity plays
a twofold role. First, calculation of evanescent waves is not so clear and
straightforward also because of the lack of a sort of Hilbert transform
technique valid for nonlinear problems. Second, genuine nonlinearity,
in the Lax sense [16], makes the amplitude of a discontinuity wave
blow up in a finite time, called the critical time. Accordingly, when
the incident wave is a discontinuity wave, its amplitude, as well as
the amplitude of the emergent waves, can blow up in a finite time
thereby rendering the problem intrinsically ill posed. It seems that
this point has been overlooked in the literature [9,17]. Although of
formidable difficulty, we believe that the problem of oblique incidence
in presence of nonlinearity deserves further special attention and
analysis.
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