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A DISCRETE ANISOTROPIC MODEL FOR
SCHEIBE AGGREGATES

0. BANG (Denmark) - PL. CHRISTIANSEN (Denmark)

A discrete anisotropic nonlinear model for the dynamics of Scheibe
aggregates is investigated. The collapse of the colelctive excitations
found by Mobius and Kuhn is described as a shrinking ring wave,
which is eventually absorbed by an acceptor molecule. An opt1ma1
acceptor loss is found.

1. Introduction.

Recently, Huth al. proposed a nonlinear continuum model, based
on ultrasonic Davydov solitons, for the energy transfer in Scheibe
aggregates [5]. These are highly ordered molecular monolayers, which
can be produced by Langmuir-Blodgett technique [1]. An oxacyanine
dye, e.g., can be used as donor molecules and a thiacyanine dye as
acceptor molecules. Even with a donor to acceptor ratio as high as
10%, the aggregate exhibits highly efficient transfer of energy from
impinging photons, via excited host molecules, to acceptor guest [7,8].
In Ref. [4] it is found that the coherent exciton picture provides an
adequate description of the experimental results, which for a dotation
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ratio of 10* indicates a life time of the coherent exciton, before it
is absorbed by an acceptor molecule, of about 10-1° s [8]. In Ref.
[3] the isotropic continuum model, proposed in [5], is used for a
qualitative prediction of the lifetime. Here the dynamics of the ring
wave solution to the cubic nonlinear Schrédinger equation in two
spatial dimensions [6] is essential.

In Ref. [2] a discrete isotropic model of the Scheibe aggregate,
based on the discrete selftrapping equation (DST) [4], was introduced.
In this model, which reflects the molecular structure of the aggregate,
blow-up of the excitation cannot occur. Initial results concerning the
absorption at one acceptor molecule, placed at the center of the ring
wave excitation, were reported. In the present work, the discrete
model is generalized to the anisotropic case, corresponding to the
actual geometry of the monolayer, as described in ref. [8]. Also the
competition between the nonlinear contraction and the absorption at
the acceptor molecule is investigated in more detail.

2. The discrete model.

The isotropic model proposed in [5] leads to the cubic nonlinear
Schrédinger equation for the wave function of the molecular excitation
u(r,t) "

(1) iUt + Upp 4+ 1"y + ]u[zu =0

in dimensionless variables [3] in the‘jcaséltvvvo spatial dimensions with
circular symmetry. Here r is the radial coordinate and ¢ is the time.
The first conserved quantity becomes '

(2) L :/ |ul?rdr.

0

To arrive at the DST equation in the anisotropic case we replace
Urr + 77 Uy BY s +uyy and discretize Eq. (1) in accordance with Fig.
1. Thus the Laplacian becomes
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Fig. 1 - Mébius and Kuhn’s brickstone work model of the Scheibe aggregate

o]
[8]. The intermolecular distance is denoted A (8.72A in physical units) and
the anisotropy angle 6(= 54.6°). The excitation of the n’th molecule and 8
neighbours are denoted A,, A, Ag,..., As.

| 1
Ay — 2—2[A1 -+ Ag + A3 + A4 - 4An]+
(3) A2s5in“ 0

cos @

m{A? + Ag - A5 - Ag]

For 6 = n/2 Au in Eq. (3) reduces to the Laplacian used in the
isotropic case [2]. In this 'manner we obtain the DST equation

(4) i A +idiag(a)A + ydiag(JA%)A + cMA =0

where loss has been included. Here wu(nyAcosf,n,Asind,t) — A, (3),
A, denoting the excitaton of molecule number n, placed at (z,y) =
(ngAcosf,n,Asind), n, and n, being integers. A is the column vector
(A1, Az, ..., ANy, N being the total number of molecules in the model.

In the DST model each dipole molecule is described as a nonlinear
dissipative oscillator, with a dispersive coupling to neighbouring
oscillators. The coupling enters via the symmetric N x N dispersion
matrix (zero elements not shown)
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where ¢ = (Asin6)~? is the dispersion parameter and § = cos 6/2. Npor
is the number of molecules in each horizontal row in the model.
Elements, —4, on the diagonal of the matrix (4a) have been removed
by a gauge transformation.
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The nonlinearity and the loss enters into Eq. (4) via the N x N
diagonal matrices (zero elements not shown)

|A1[?
. . AP
(4b) ydiag(|A[%) = v ,

|[An|?

431
a2
(4¢) diag(a) =
an

Here v is the nonlinearity parameter (y = 2 when Eq. (4) is a
discretization of Eq. (1)). Our model include only a single acceptor
molecule, placed centrally at site number (N + 1)/2, N being odd. We
shall consider absorption at this molecule and neglect radiative losses
at the donor molecules. Thus the a components become «; = o,,, for
i=(N+1)/2 and o; = 0 for i # (N + 1)/2.

In the lossfree case (aqc. = 0), the conserved quantity I; becomes

PRI

(5) I = 5 Z [4n ()2

To obtain initial values for the excitation A we sample a ring
wave profile [6] with radius ry given by

(6) T'():/\\/NQ/W,

where the number of sampling points initially inside the ring wave,
Ny, is chosen to be a typical number of molecules in the coherent
exciton, 10%. For the case considered in [3], we get in dimensionless
units (A = 1) ro = 50.9, vo = 0, I; = 5.55, teontapse = 809. For convenience
we use the scaling invariance of Eq. (1) and (2), t < 8¢, r — g1/2 . p;
wes §~12 . 4, I — I, with 8 = 1024. For computational reasons we
reduce Ny, by a factor 4, in order to limit the number of coupled
DST equations, which have to be integrated over a few time units
(teottapse = 1). In Ref. [2] it was demonstrated that a moderate
reduction of Ny has no significant influence on the numerical results.
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3. Numerical results.

Figure 2 shows the evolution of the ring wave in the isotropic
DST model without loss. Initially the ring wave is seen to contract
(Fig. 2a-c), as predicted by the continuum model [6]. At the final
stage of this process a global maximum forms at the centre (Fig. 2¢),
corresponding to the beginning of the blow-up. However, no matter
how fine the grid in the discrete model may be, the amplitude of the
shinking ring wave in the centre area will eventually reach such a
magnitude that the resolution of the grid becomes insufficient. As a
consequence the DST model cannot reproduce the blow-up further
and dispersive radiation among the coupled oscillators results (Fig.
2d-f). This is a realistic feature of the discrete model. However, in
order to complete the energy transfer, absorption at the acceptor
molecule can be introduced, as we shall see. The asymmetry with
four preferred directions, which develops in Fig. 2e-f, is caused by the
4-nearest-neighbours approximation used in the dlscretlzatlon (Eq.
(3)).

Figure 3 shows the corresponding time evolution of the ring wave
in the anisotropic case where 6 = 54.6°, corresponding to Mobius and
Kuhn’s brickstone work model of the Sheibe aggregate. The effect of
the anisotropy is seen to be important only in the dlsperswe phase
of the evolution (Fig. 3e-f).
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Fig. 4 - Reduction of I; as funtion of
acceptor loss, «g.., at times t = 0.8,
1.0 and 1.5 Anisotropy and initial data
as in Fig. 3.

We now introduce losses at the acceptor molecule at site (N +1)/2
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Fig. 5 - Time evolution of |A..|? and I; for anisotropy and initial data as
in Fig. 8. The acceptor loss a4c. = ()0, ()100, (¢)500, (d)800.

and leave the anisotropy unchanged. In Figure 4 the reduction of
the quantity I, given by Eq. (5), is shown at three different times
after the ring wave radius has become zero, which is when the
dissipation is significant. A maximal reduction is seen to occur for
@gec = 500—600. In this range the loss matches the intrinsic impedance
of the aggregate. The details in the time evolution of the intensity of
the acceptor molecule excitation, |A4,..|?, and I; are shown in Figure
5 for different values of a4e.. In the lossfree case (Fig. 5a) |Agce]?
raises, through oscillations, to an almost constant level (~ 2000),
which persists at least until ¢+ = 2.5. A similar self-trapped state
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was observed in the 1-dmensional DST model [9]. For the relatively
small acceptor loss, as.. = 100, |Ag.c|? vanishes only after a number
of oscillations (Fig. 5b), each peak corresponding to a drop in I;. This
multifocal behaviour was also observed for the cubic 2-dimensional
nonlinear Schrédinger equation with a nonlinearly localized loss term
[10]. Near the optimal value, a,.. = 500, only a single peak is observed
(Fig. 5¢) and a maximal reduction of I; is seen. For larger values of
agce (Fig. 5d) the dissipation dominates over the nonlinear contraction
and |As..|? remains small.
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Fig. 6 - Evolution of ring wave in lossy anisotropic DST model. ¢ = 385.2,
6 =0.2896, vy =2, ro = 1.59, I; = 5.55, Ny = 10/4, aze. = 500; t = (a)0,
(6)0.7, (¢)0.8, (d)0.9.

Finally, Figure 6 shows the time evolution of the ring wave
excitation in the optimal case (a,.. = 500). As result of the dissipation
the dispersion of the ring wave is delayed and reduced.

4. Conclusion.

We have shown that the anisotropy of the Mobius and Kuhn
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brickstone work model of the Scheibe aggregate has a small influence
on the collapse of the colective excitation, essentially manifesting
itself in the dispersive phase. Thus the collapse time predicted by the
isotropic model is essentially correct. We have also found that there
is an optimal value of the acceptor loss (~ 500 — 600), for which the
reduction of the excitation intensity is maximal. To our knowledge
the acceptor loss has not yet been estimated in the literature.
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