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BREAKING SOLITONS.
SYSTEMS OF HYDRODYNAMIC TYPE

O. I. BOGOYAVLENSKIJ (Moscow)

1. Introduction.

I. Certain class of integrable n + 1-dimensional equations was
studied by F. Calogero and A. Degasperis in works [1-3] by using
the generalized Wronskian relations. Some general Lax type operator
equation was proposed by V.E. Zakharov [4] for constructing of n + 1-
dimensional integrable equations. These constructions were discussed
also in the monograph by R.K. Dodd, J.C. Ellbeck, J.D. Gibbon and
H.C. Morris [5]. |

The equations which are studied in this paper and in works
[6,7] are not integrable for the general initial data, but their
N-soliton solutions may be found explicitly and they possess the
breaking behaviour. We consider the differential equations, which are
equivalent to the following equation in space of linear operators L
and A:

(1.1) Li = P(L) + Zn:'Rk(L,Lykl) + [L, A],
k=1

where P(L) and Ri(L,L,,) are certain meromorphic functions of
operator L, fuentions Ry(L,Ly,) are linear with respect to L,,. We
assume that operators L and A depend on the variable ¢,yi,...,y,
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and L,, ='90L/0y;. L and A are supposed to be n x n matrices or
1-dimensional differential operators (in the last case L is self-adjoint
operator, A is skew-symmetric operator).

Coefficients of meromorphic functions P(L), Riy(L,L,,) are as-
sumed to depend on invariants of operators L and their derivatives
with respect to variables ¢, yi,...,yn, that is the coefficients do not
change after the transformation L — QLQ™!.

LEMMA 1. In view of equation (1.1) the eigenvalues f(t,y1,-..,yn)
of the operator L satisfy the system of equations

(1.2) fo= PO+ S Balf ).
k=1

If coefficients of functions P(L), Ri(L,L,,) are constants, the
system (1.2) is splited into noninteracting equations for each eigenvalue

fj(t)yl, ceey yn'):

(1.3) fit = P(F) + > Ri(Fj, fip)-

k=1

Proof. is done in work [7].
In the case

(1.4) P(L)=0, Ri(L,Ly,)= > cRL™ L, L
0<i<m

the equation (1.3) is the conservation law and we get as a consequence

(15) (1) =Z( ) ”‘j;kp f}““’) .

k=1 \0<Li<m

Hence, assuming that the eigenvalues f;(¢,v1,...,yn) tend to zero
rapidly enough for |y;| — oo and applying the Gauss-Ostrogradskij
theorem, we obtain the conserved quantities

dJ,
(1.6) dt =0 "/ (fi)Pdys,. .., dya,
| dI, |
dt - 0 Ip = / Tr(Lp)dyl’ L )dyn .

R
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These properties distinguish essentially the equation (1.1) from
Lax equation I; = [L, A]. Equation (1.1) as P(L) # 0, Ri(L,Ly,) = 0
has the attractors in the phase space, see work [6].

2. System of hydrodynamic type, connected with the Toda
lattice.

Let us consider the operator equation

(2.1) Li=LLy+ LyL + [L, 4],
where matrices L and 4 have the form
(Pl ap 0 0
| @1 P2 a2
L= 0 az ps3 ’
\ T Ap—1
0 apn—1 Pn
2.2
) —j:cl 0 - o
A - | -9 0
T Tp_1
\ 0 —Lp—1 0

The operator equation (2.1), (2.2) after the substitution
a; = exp(gi+1 — ¢r)
is reduced to the following system of equations

pit - szpzy + 4(Qz+l,y + ﬂ)ez(qi'*-l_qi) — 4(-q1._1,y + ﬂ)ez(qi"'qi—l),
(2.3) k=i-1

@G, = 2piQiy + pi, + 2 Z Pk, + 28p;.

. k=1
where 3 is an arbitrary function of ¢,y. For solutions, independent on
y, system (2.3) turns into the famous Toda lattice [9-13], system (2.3)
as § =0 is a system of hydrodynamic type, following terminology of
works [8,14].

According to the Lemma 1, the eigenvalues fi(¢,y) of the matrix

L (2.2) due to the system (2.3) satisfy the equation

(24) fre =20k fry-
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Hence the eigenvalues fi(t,y) are the Riemman invariants for
the system (2.3). Obviously they possess the breaking behaviour.

3. System of hydrodynamic type, connected with the Volterra
model. '

I. Let us consider the operator equation
(3.1) Ly = LL,L+[L, A]

for martices [ and A of the following form

(o ovm o
Va0 E
Va0
L:| )
| an—-1
(3.2) \ 0 -+ \/@n—10 /
( 0 0 iR 0
0 0 0 To
A= -1 0 0 Tn_9
0

—2 “. *e
\0 ’ —2zp—2 O 0

Operator equation (8.1), (3.2) is equivalent to the system of
equations

a;, = a; (ﬁ(aiﬂ —a;_1)+
(3.3) | k=i k=i-2
-1 -1
+ Qiy + 541,y + iy Z Ay Qp ~ — A1 Z AkyQp, >,
k=1 k=1

where 8 is an arbitrary function of ¢,y. System (3.3) for solutions,
independent on y, turns into Volterra model [13], system (3.3) as
B =0 is system of hydrodynamic type.

Due to the Lemma 1 we get that eigenvalues f;(t,y) of the matrix
L (3.2) in view of system (3.3) satisfy the equation

(3-4) Fri = Fifry-
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Hence they are the Riemann invariants for the system (3.3) and
have braking behaviour.

II. System (3.3) after transformation a; = exp u; turns into the
system

k=i+4+1 k=i-2

(3.5)  wi, = PeiFt —eim1) 4 ey + et Z Upy + i1 Z Uky -
k=1 k=1
System (3.5) has the following form
(3.6) ZA”——-— H= %Trl;2 = el 4 e .. F ¥t

The operators A" are skew-symmetric and have the form

. n—1

5, ij ;
(3.7) AV = gt ——+Zb uky+[311

Here the coefficients g%/, b , I'/ are constants and non-zero onl
k y
in the following cases

i ii+1

¢i=y 41,4 — 1’ Ii,i+1 - _Ii+1,i — 1,

=49
(3.8)
bttt = bt =1 ag 1<k <.

Scalar product of two functionals F(u) and G(u)

(3.9) (F,G) = / OF s ﬁdy

oo (SUg 5Uj

is skew-symmetric. As a consequence of (3.6) we get the conservation
law

o0 o0
(3.10) / Hdy = —;—/ TrL:dy = const.
— 00 — 00

The same conservation law (3.10) and representation of the form
(3.6), (3.7) do exist also for the system (2.3).
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III. Let us suppose that there exists a smooth function v(t,z,y),
such that

(3.11) a;j(t,y) =1- 62v(t,mj,y), z; ': je, B =381
System (3.3) after the substitution of
=%, y =y+4t, 2 =z+68t
and passing to the continuous limit ¢ — 0 is transformed into the

equation

(3.12) v = 4uuy + 2%/ vy (t,€, y)d€ ~ Upzy + Bo(6vuy — Vpps).
0

This equation belongs to the class of equations, studied by F.
Calogero and A. Degasperis [1-3]. In the following paragraph we
study the concrete properties of the equation (3.12).

4. Equation of interaction of Riemann breaking wave with
transversal KdV long waves.

1. Physical sense. Equation (3.12) for functions v = v(t,y) takes
the form of the Riemann breaking wave equation

For the functions v = u(¢t,2), z = ¢ + ¢y equation (3.12) turns into
~ KdV equation

(4.2) | vt = (¢ + Bo)(6vy, — vyzy).

So equation (3.12) describes interaction between Riemann break-
ing waves (4.1), running in y-direction and KdV long waves (4.2),
travelling in transversal directions.

II. Hamiltonian structure. Equation (3.12) after substitution
v = u, takes the form

(4.3) Uty = 4Uplipy + 2UyUpy — Uppapy-
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This equatioh has Hamiltonian form

o0
6H 1
(4.4) Uy :6;175?’ H= / (‘Q—Umx — uf,) uy dady.
-0

III. Operator representation. Equation (4.3) is equivalent to the
following operator equation

(45) Ly =2LL,+ L,L)+[L,A]l, L = =02 + uy, A= —uy0y —dyuy.

So according to the Lemma 1 the eigenvalues f;(¢,y) of the

Schrodinger operator L = —92 + u, in view of equation (4.3) satisfy
the Riemann breaking wave equation

If one takes the operator A of the form
(4.7) A = —uy0y — Opuy — 2F (¢, y)0,,

where F(t,y) is an arbitrary function of ¢,y, then from equation (4.5)
one gets

(4.8) Ugt = dUgptpy + 2(uy + F(t,Y))Uss — Uppey-
Operator equation (4.5) may be written also in the Lax form
Li=[L,A— Lo, —0,L).

Equations (4.3), (4.8) possess also the operator representation
analogous to the zero-curvature representation

(4.9) U= Va4 U, V] = 4N,
(1 0 0 1
U——’L/\(O —1>+(u:c 0)1
o Uy + F 0 —Uzy 2uy + F)
V =2\ ( Ugy —uy — F> + (QUx(Uy + F) — Upgpy Upy .

Here ) is an arbitrary spectral parameter. Equation (4.9) is the
compatibility condition for linear system of equations

(4.10) Yo = U, =4\, + V)
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and has commutator form
(4.11) [0, — U, 8 — 42?8, — V] = 0.

IV. Evolution of scattering data. We consider the one-dimensional
scattering problem, associated with the one-dimensional Schrodinger
operator L = —2 + u,. We suppose that potential u,(¢,z,y) tends to
zero as ¢ — +oo. The primitive function u(t,z,y) has the following
asymptotics:

u(t,:r:,y) - g(t)y): as z — —oo,
(4.12)
u(t,z,y) — h(t,y), as z— +oo.

Evolution of the scattering data ’a(k,t,y), bk, t,y), fr(t,y), bx(t,y)
due to equation

(413) Uty = 4Uxuxy + 2(Uy + F(t, y))uw — Uppry + 7(6uxuxx - U:vx:vxi)

is described by equations

(4.14) a; — 4k’ay = 2ik(gy — hy)a,
be — 4k*by = (2ik(gy + hy + 2F(t,y)) + 8vik3)b,
bk, + 4Abi, = (=20 (gy + hy + 2F (2, 1)) + 8723)by,

oo =4fefry,  fo = =)L

These equations as g¢(t,y) = 0, h(t,y) = 0 coincide with equations
obtained by F. Calogero and A. Degasperis [1-3], and in this case are
integrable linear equations.

In general case g(¢,y) # 0, h(t, y) # 0 equations (4.14) are nonlinear
and even are not closed, because they include asymptotics g(t,y),
h(t,y) of unkown primitive function u(t, z, Y)-

V. N-soliton solutions. One-soliton solution of equation (4.13) was
found in [1-3] and has the form

_ —2)?
- cosh’(\z — o)’

A+ 4X20y =0, @ + 4220, = 4923, A2 = _f

(4.15)
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N-soliton solutions, found in [6], are determined in accordance
with Hirota’s method by the formulae

N
d
(4.16) u(t,z,y) = —QE;IndetA(t,a:,y)—22)\n(t,y),

n=1

Bi(t,y) o= (A tA))z

(4 — 80
A (t,z,y) k]+/\k+/\j

_ ba(t,y) & k—i),
/Bn(t,y) b ia/(i/\n)’ a(k)t)y) —nI=Il k""'lAn )

bn, +4dnbn, = (=2Xk(gy + hy) +8YA0 )b, An, + 422X, =0, =A% = f,.

These formulae describe breaking N-solition solutions. The break-
ing of the graph of the function u(t,z,y) takes place simultaneously
on all axis # with the breaking of the graph for one of the functions
An(t,y). A single valued branch of the function u(t,z,y) corresponds
to each choice of single-valued branches of the functions An(t,y).
Derivative u,(t,z,y) has the form of the N-soliton solution of the KdV
equation for each branch.

Solutions (4.16) are localized on the plane z, y if functions An(t,y)
exponentially tend to zero as |y| — co. The function A(t,y) in formula
(4.15) may be taken as smooth solution of equation ), +4X2), = 0
identically equal zero as |y| > C; corresponding function ug(t,z,y) =0
as |y| > C. The main difference with localized multisoliton solutions
of Davey-Stewartson equation [15-18] consists of phenomenon of
breaking for solutions (4.16).

- ~

VI. Shock N-soliton solutions. Equation (4.16) for each eigenvalue
Jr(t,y) is the conservation law

(4.17) fio = (258)y = 0.

It is possible to consider discontinuous solutions of (4.17) with
Rankine-Hugoniot condition

(4.18) Shl=[-27, S=-2(fiy - fi2),

where S denotes the speed of propagation of line of discontinuity
y = y(t), that is s = dy/dt. Corresponding N-soliton solution (4.16) has
N shock waves, travelling with different speeds.
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VII. Modified 2+1-dimensional equation. Equation (4.3) after
Miura transformation

(4.19) Uy = 02 + ouy

gets the modified form
(4.20) vy = 4ulyy + 2vx/ (02)y (t,&,y)dE — Svppy, S =0
0

Modified equation (4.20) possesses the operator representation
(4.21) Ly = o(LyL* + L*Ly) + [L, A]

with matrix operator L:

_ 'Z'pl 0 . 0 1
(4.22) L_(O 'ip2)8”’+v<1 0),

where a = —(p1 — p2)?/2p1p2;
Breaking soliton of equation (4.20) as S = —1 has the form

A
~ cosh(Az — )

(423) y /\t = Az/\y, Yy = /\zlpy.

Equations for scattering data evolution are found in [6].

VIII. Countable set of conservation laws. Equation (4.3) after the
Gardner transformation

(4.24) Uy = W+ Wy + e2W?2

turns into the equation

(4.25) Wi = 2(W (uy — 5Wyz)‘)a, + (W2 = Wew)y.
Substituting into this equation the formal power series

(4.26) W(t,z,y,e) = Z Po(ugp)e™ = uy — Uy + (Upps — u)e?. ..,

n=0

2W (uy — eWy) = Z Qn Uz, uy)e”, W2 = Wao = Z R (uz)e”,
n=0

n=0
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we get the conservation laws

0P, (uy) _ '0Qn(uy,uy) + OR, (uy) .

(4.27) 'Ot - Oz Oy

Here P,(u,) are the same differential polynomials of u, as in the
theory of KdV equation. From (4.27) the relation follows

[ee] o0
d y=+o0
(4.28) E[/Pn(uxr)dmdy:—/PnH(uxl)d:c
—oo “oo y=-00

IX. Connection with the integrable Klein-Gordon equations.
PROPOSITION. Any solution of Klein-Gordon equation
(4.29) Pay = f(p),
where function f(p) satisfies the linear equation
~ (4.30) Sf'(e) = fe),
defines the solution of the modified equation
(4.31) v = 4vzvy + 2'0,,‘8;1(112)3, — SUpgy

by the formula

1
(4.32) u(t, z,y) = 5%,(::: + ¢(8), ),
where c(t) is an arbitrary function.

Obviously there are the following non-equivalent cases of
equations (4.29)-(4.30):

S =41 puy = €%, ppy = sin he, @y = cos h;

S=-1: Pey = Sin .

Exact solutions of Liouville equatioh vey = €¥ lead to exact
solutions of equation (4.31) (S = +1)

Ldfesd))  a(ete)
2 d(z+c(t)) alz+clt)+by)’

(4.33) o(t,z,y) =
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which depend on three arbitrary functions a(z), b(y), c(t).
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