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ATTRACTIVITY CONDITIONS
FOR A PERTURBED LOTKA VOLTERRA MODEL

F. CAPONE - S. RIONERO (Napoli)

A perturbed non-autonomous Lotka Volterra model with a diffusive
term is considered. Conditions assuring non linear stability of a
biological critical point are obtained also in the case in which the
diffusivity coefficient is time periodic.

1. Introduction.

The analysis of perturbed Lotka - Volterra two dimensional
predator-prey equations has been widely developped by many authors
(see for istance, [3],[4], [5],[9], [10],[11],[12], [14], [15], [16])

Different types of perturbations terms have been introduced in
order to account for (small) variations of the idealized hypotheses
of the Lotka - Volterra models as well as to put controls on the
growth of both predator and prey. In [10],[11],[12], small autonomous
perturbations of very general type, depending on a small parameter,
have been considered and their influence on the stability of the
positive equilibrium point of the classic Lotka - Volterra model, or on
the existence both of periodic solutions of the perturbed system or
perturbed critical points. Recently, in [6] time dipendent perturbation
terms, depending on the small parameter, have been introduced in
the classic model and their influence on the stability of the equilibria



56 F. CAPONE - S. RIONERO

of this model has been studied by using the multiple scale method.

In [7],[8], Fergola Rionero Tenneriello, consider the same type of
nonautonomous perturbation, but they do not make any assumption
on the ” smallness ” of these pertubations.

Precisely they consider the following system :

(1) { z = ax — bey+D(t)(y — z)

Yy =—cy+dey+D(t)(z - Y)

with a, b, ¢, d positive constants such that

and D=D(t) regular enough to assure global ( in time ) existence and
uniqueness.

Using the Liapunov Direct Method they obtain conditions
assuring exponential stability of

under the foundamental assumption that:

2 f Dt)y=D
® nf, D(t) = Do > 0

Because in the case D = 0, 2* = y* is stable, this restriction
appears too strong. In order to overcome this restriction, in this
comunication we reconsider the problem and obtain conditions
assuring non linear stability under conditions on the function .

(3) | At D(r)dr

2. Main theorem.
Setting

(4) {x:x*-{—u

y=y*"+v
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the problem is reduced to study the stability of v« = v = 0 for the
following system :

(5) u = —D(t)u + m(t)v — buv
v = n(t)u — D(t)v + duv
with
(6) m(t) = D(t) — a
| n(t) = D) + ¢
Therefore, introducing the Liapunov function
7 V(t, ) = u? + \%p?
A = positive constant
it follows:
(8) V< —F\OV +aA)VF
with
F=2D— ]g[
=" =L pion
©) =R rmMETy +)
2 b
A)= —=(d+ —
o) = 5= (d+ 7)
Setting
t
H(\t) =V exp [/ F()\,r)dr]
(10) ’

t T
G(/\,t):/ exp[——l—/ F(A,&)d{]dr
0 2 Jo
then it follows:
t
(11) H< a()\)H%exp[—-%/ F(/\,T)dT}
, 0
THEOREM L. If

t
(12) INeRT: lim [ F(\ 7)dr =
0

=00
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then
1 2

" RREOE)

assures the nonlinear attractivity of (z*,y*) according to

exp [——% n F(/\,T)dT]

(14) V7 < _
Hy * — 2Q)G(c0)

Proof. Integrating (11) in [0,¢] we obtain

¥t - 2 el <1
7% - 6] <

then, by hypotheses (12) and (13), it follows :

exp [ ey r)dr]

Hy 7 — 22 G(o0)

(14) V<

Remark 1. Because

exp [-—-—%— /Dt F(/\,r)d'r} = exp [-% /OFF(/\,T)dT:I exp [—% /; F(A,r)dr]

with ¢t > 7 , one immediately obtains that , concerning the asympotic
stability , the behaviour of D(#) in [0,7] is unimportant with respect

to the
t

lim [ F(\7)dr =00
t—00 Jg .

3. Case D=D(t) periodic function.

Let
D:Rt—=R

be a periodic function of time with period T.
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Remark 2.

t T
(15) lim [ F(A r)dr = oo < / F(A,r)ydr >0

t—00 0

In fact D(t) is a periodic function, hence F is a periodic function
with period T, too.
This implies that :

(16) /Ot FO\7)dr < (n+ 1) /OT F(A,r)dm/l FO\, 7)dr

with:
ne€N: T <t<(n+1)T
(17) L ={te[0,T]: F(\t) <0}
IL={te0,T]: F(\1) > 0}

.,Hl_l (/Ot F(\, r)dr — /1; F(/\,T)d'r)

so that (15) immediately follows.

Ahd hence:

T
/ F(A r)dr >
0 .

Remark 3. If D: Rt — R is a periodic function of time with
period T we have :

T . T
(18) / FO,P)dr > 0 = / D(r)dr > 0
0 0
Proof. Because of

T T
/O [2D(7) — |g|}dr = /O F(\r)dr >0

T T
2/ D(r)dr>/ lg|dT
0 0

THEOREM II. If D = D(¢) is a periodic function of time with
period T we have :

then it follows

T
/ P\ r)dr>0=
0
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a—ch? a—c\?
(19) e / D(r)ir < =5z

Proof. Because of
l9(X, )] = £g(A, )

we have
T T T
/ F(A,m)dr > 0= 2/ D(r)dr > :l:/ g(A, m)dr
0 0 0

but
g(\t) = D-a

:l:/OT g(A, m)dr < Q/OT D(r)dr

i%/{)T[(D—a)+(D+c)A2]dr< Q/OTD(T)dr

+(D+c)A

from which

if and only if

ie. for A >0
T T
j:/ [(D=a)+(D+c)\dr < 2)\/ D(r)dr
0 0
hence
a— cAz 1 /\2

Easily follows that if a > ¢, (20) does not give restriction to the
mean value D of D :

T
(21) D = %/é D(r)dr

¢

In the case a < ¢, one has :

THEOREM III. If D : Rt — R is a periodic function of time with
period T and

a<c
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then

T
F(\ 7)dr >0 T
(22) '/0 ( )T) T > :> _1—/ D(T)d'[‘ S a,c
+ T 0 c—a
AER

Proof. If a < ¢, the function 7;(})

a— cA\?
(23) m(A) = a—nr
is increasing from zero to —Z— and decreasing from % to 4 /% with
m®) = —
(24) , o
e

PROPOSITION 1. If D : R — R is a periodic function of time with
period T, then :

T T T 2
(25) / |D — a]dr/ |ID + c|dr < [/ D(T)dr]
0 0 0
implies:
T
(26) e Rt / F(A,7)dr >0
0

Proof. Because of

D —al

A

lg| < +|D + |

one obtains :
1 T T T
5 [ p—ddrexr [ ip+er<2 [ p(rar =
0 0 0

T T
:>/ lgldr < 2/ D(r)dr
0 0
ie

T T T
/\2/ [D+c|d7'—2)\/ D(T)dr+/ |D —aldr <0
0 0 0
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which is satisfied for

[/OTD(T)dTJ2>/OT |D+cld7'/OTlD—a|d7"

with A € (Ar, A,)
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