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GEOMETRICAL ACAUCHY PROBLEM FOR H-J
EQUATIONS AND WAVE PROPAGATION

FRANCO CARDIN (Padova)

In the paper [1], a geometrical framework for the Cauchy problem
for the Hamilton-Jacobi H-J equation was developed. Briefly, we recall
the main result of that work. Let M be a n-dimensional manifold,
for example the space-time, and let A be a (n — 1)-dim manifold. Let
S(¢*,a%), (¢!,a*) € M x A, be a complete solution of the H — J equation

H <qi,g§:('qk.)> =0; if the Cauchy data o(x%) = s(¢(x*)), where

x4 — §@(x*) is an embedding of the initial surface ¥ of co-dimension
one into M, are not characteristic, then the function

,(1') S(qi> aAsXB‘) - S('qi’ aA;) - S(?(XB')’ aA:) + U(XB‘)

is a global generating function, or Morse family, which generates
a Lagrangian submanifold A of the symplectic contangent bundle
(T*M,wpr), '

. a8 | ; as | ;
A={(@n) €M : n=gr(d',at X),0= 5o el )
(2) | o5
0:6X—B('-qi,aA,st), for some (a?,x5) € AXJE}

The manifold A is solution of the afore-mentioned geometrical
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Cauchy problem.
A Lagrangian submanifold A of T*M is characterized by:

1) dimA =dim M,

ii) the canonical 2-form wy; = dp; A dg’ restricted to A is vanishing.

We just remember that such a solution A is, roughly speaking, a
graph in the space of states and momenta of a possibly multivalued
function of the state variables, and that it is classical solution
whenever it is single-valued.

Furthermore, in [1], I proposed a way of constructing single-
valued candidate ”solutions” to the H-J equation by means of the
same Morse family S which generates the geometrical solution. This
was done by an inf-sup procedure over the sets of parameters defining
the family,

(3) s(¢") = inf sup S(¢', a4, xB).
XEX ge4

This seems to be a natural generalization of the classical
procedure of stationarizing — see (2) — over the same parameters a4
and x® (Huygens principle) in order to eliminate them, a procedure
which leads locally to classical solutions, but fails around singularities
of the solution.

In the case of the eikonal equation of geometric optics (with
constant index of refraction), this was shown to lead to the known
physical solution, which is indeed the unique viscosity solution of
the boundary value problem. The theory of viscosity solutions was
introduced by Crandall and PL. Lions [2] and Crandall, Evans,
and Lions [3]. This is an analytical theory dealing with boundary
value problems on open subsets of IR", and solutions are continuous
functions of the state variables satisfying the fully nonlinear partial
differential equations in a suitable weak sense. The most remarkable
features of this theory are existence, uniqueness and stability results
under very general assumptions on the Hamiltonian function and the
initial data. '

In a further paper [4], I show that the inf-sup procedure on the
Morse family leads to the unique viscosity solution for a more general
class of problems, namely for convex Hamiltonian functions depending
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only on momenta, # = H(p). This is achieved by showing that the
function we construct coincides with a representation formula for the
solution first derived by Hopf [5], and that was shown to provide the
unique viscosity solution by P. L. Lions [6] and Bardi and Evans [7].

Even though our assurhptions on the Hamiltonian are rather
restrictive (substantially, in both approaches we are concerning with
”Liouville-integrable” systems), we think our result gives some hope
to link the geometrical and the viscosity theory of H-J equations in
more general situations.

Lagrangian manifolds and their generating functions were first
introduced by Maslov [8] and Hérmander [9] in connection with the
construction of asymptotic (for some vanishing parameter ¢) solutions
of linear partial differential equations. In that way, the two authors
developed the theory of the Canonical Operator and the theory of
Fourier Integral Operators.

The aim of the paper [10] is to apply the results in [1] to the
concrete construction of asymptotic solutions of Cauchy problems for
the Schrodinger equation, when a complete solution of the related
H-J equation is known. The solutions so constructed, are as global as
the complete solution is.

We shall utilize symplectic techniques for the asymptotic integral
solutions of the Schriodinger equation by following the line of thought
of Duistermaat [11], and in particular, without to enter and to use
the full machinery of Fourier Integral Operators.

Let us consider the problem of finding asymptotic solutions (of
accuracy one) of the Schrédinger equation

: 2
(4) ie—%itb—(t, r) = ———;—Atﬁ(t, )+ V(z)y(t,z),
with the following rapidly oscillatory Cauchy data
(5) (0, 2) = o(x) exp {é—a(m)} :

The idea of obtaining oscillatory asymptotic solutions of (4), up
to suitable O(¢™), consists in trying to solve (4) by means of integrals
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of the form (U C IR"):

(6) I(t,z;¢) :/ b(t,:c,u,a)exp{-z—é(t,x,u)}du,
uelU €
for some amplitude b and real-valued phase function ®. Such integrals
can be regarded as a continuous superpositions of oscillatory functions.
According to Duistermaat’s idea about the globalization of the
method of stationary phase (in a weak sense), by recalling the Maslov-
Hormander theorem on the parametrization of the Lagrangian
manifolds, and by some asymptotic computations, we obtain the
- following fact:
the geometrical objects globally characterizing the phase & of
the above oscillatory integrals (6) are the Lagrangian submanifolds
A of T*IR™*!, (t,z) € IR™™, belonging to the surface H=1(0) c T*IR"*?,
(z° = t), where the Hamiltonian function is

(7) AP =Rt V)

In other words, we are looking for a Lagrangian submanifold
solving the geometrical Cauchy problem for the H — J equation H = 0,
where the initial data are related to the initial phase o(z) in (5).
Now, suppose that the above H — J equation admits a global complete
solution S(t,z,a). We have seen that a global Morse family generating
the Lagrangian submanifold solving the above Cauchy problem is
given by

(8) S(t,z,a,x) =S¢, z,a) —S(0,x,a) + o(x),

where here the auxiliary parameters u in (6) are a and . It follows
that the oscillatory asymptotic solution will be of the form

zp(t,m;e):/ / b(z,a,X,¢)
XEL a€A

9)
X exp {%[S(t, z,a)— S(0,x,a) + G(X.)]} dyda,

and b will be choosen in order to i(t,z;c) satisfies the initial data
Yo(z) with the same aecuracy (there is a suitable transport equation).
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The example of a particle in a weak (A ~ 0) force field is worked
out in [10]; the connection with the known exact solution of the limit
case (A =0), as it is presented e.g. in Vladimirov [12], formula 14.1,
is pointed out.

An other concrete application (in preparation) of the above ideas
concerns the study of asymptotic solutions for the system of the
Linear Elasticity;, a different approach to approximate solutions to
linear elasticity as continuous superpositions of oscillatory functions
can be found in the paper [13] of M.I. Taylor.
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