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1. Introduction.

We consider the linear theory of a thermoelastic porous solid
in which the skeletal or matrix is a thermoelastic material and the
interstices are void of material. We assume that the initial body is
free from stresses. The concept of a distributed body asserts that
the mass density at time ¢ has the decomposition yv, where v is the
density of the matrix material and v(0 < v < 1) is the volume fraction
field (cf. [1,2]). ' '

In the first part, in order to derive some applications of the
reciprocity theorem, we recall some results established by same
authors in [3]. Then we obtain integral representations of the solution
and prove that the solving of the boundary-initial value problem can
be reduced to the solving of an associated uncoupled problem and to
an integral equation for the volume fraction field.

2. Preliminary.

Throughout this paper we shall employ a rectangular Cartesian
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system Oz;(i = 1,2,3). Let B be a regular region of space occupied by
a thermoelastic material with voids, whose boundary is 9B8. Moreover
B is the interior of B, n; are the components of the unit outward
normal to ‘9B. }

The basic equations of the theory consists [4] of the equations of
motion

(2.1 tiij + fi = pity, hig+g+1=prp,
the energy equation

(2.2) Ton = ¢ii + S,

the constitutive equations

tij = Cijrsers + Bijo + Dijror — Bis 9,
hi = Aije; + Dysiers + dip — a;9,
(2.3) 9= —Bijei; — &p — dip; + md,
n=Bijei; + ad + mo + a;p;,
¢ = K9 5,
the geometrical equations
(2.4) eij = %(Ui,j + U,

where the significance of the simbols is obvious.

In the above relations we have used the following notations:
u-displacement, t-stress, f-body force per unit volume, p-density
in the reference configuration, x-equilibrated inertia, k-equilibrated
stress, l-extrinsic equilibrated body force per unit volume, g-intrinsic
equilibrated body force, n-entropy per unit volume, Ty(> 0) constant
absolute temperature in the reference state, ¢-heat flux, S-extrinsic
heat supply per unit volume, A, B, C, D, K, 3, ¢, a;, a, d; and
m-characteristic coefficients of the material.

We introduce the notations

V=T —"To, ¢ =V -1y,
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where T is the absolute temperature and vy is the constant volume
distributions function for the reference configuration.

We assume that:

i) constitutive coefficients A, B, C, D, K, 3, ¢, a;, a, d;, m, density
p and equilibrated inertia « are continuous on B;

ii) the coefficients A, B, C, D, K and § have the following symmetries
Cijrs = Crsij = Cjirs, Ai; = Aji, Bij = By;, .

Dijk = Djix,  Bsj = Bjis Kij = K

iii) £, I and S are continuous on B x [0, c0].
It is known that (see for example Carlson [5])

(2.5) ¢9,; > 0.

We consider the following boundary conditions

u; = U; onS’lxI, tj;nj:f,- on Sy x I,
(2.6) po=¢ponSysxI, hn;=honSyxI,
9=9on Sy xI, ¢n;=4onSexlI.

Here S; (i = 1,...,6) denote subsets of 9B such that S;US, =
S3US4 :§5U56 =0B, SiNS; =53N8S4 =8S5NSs = 0, I = [0,00) and i,
&, ¢, h, U, ¢ are prescribed.

We assume that

(a) a, b, ¢, d and ny are continuous on B;

(ﬁ) i, ¢ and J are continuous on S x I, S3 x I and S5 x I, respectively;

(7) 1, h and § are continuous in time and piecewise regular on S, x I,
Sy x I and Sg x I, respectively.

The components of the surface traction t, equilibrated silrface
traction h, and the heat flux ¢ at regular points of 9B x [0,c0] are
define by )

ti =tiun;, h=hn;, ¢=g¢n;.
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To the system of field equations we add the initial conditions

(2.7) ui(z,0) = a;(2), w(z,0) = bi(z),

0(2,0) = c(z), @(2,0) =d(z), n(z,0)=rno(z),z€B.

3. Main results.

THEOREM 3.1. Assume that
(1) p and «k are strictly positive;
(ii) K;; is positive semidefinite;
(iti) a is strictly positive (or negative).

Then the boundary - initial value problem of thermoelastody-
namics has at most one solution.
We denote by w * v the convolution of w and v

t
[w* v](z,0) = / w(z,t — F)v(z, T)dr,

0

where w and v are scalar fields on B x I continuous in time.

We introduce the functions
(3.1) iW=1 p)=(*j)y=t tel

~In what follows we write h for j b, i.e.
N . t :
(3.2) O Ry = / ii(;n-,’s)ds.

Usmg (3 2) and the condltlon 17(:0: 0) = ng(:v) z € B the relation
(2.2) may by Wntten as -

(3.3) '  T =AW,

where W = S + T, ?70,.
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Now we consider two external systems
N = (@) (@) 5(2) (o) §@) (@) fi(@) jla)

4,20, b, ), &, nf) (2= 1,2)

and we denote by

Q) = {u(®), (), 9@ (@) P (@) o) o@) gle)y

a solution corresponding to N(®), We define

(3-4) (0 =1, WO = h®ng, () = g{

W = 5@ 4 Tynl® (e =1,2).

LEMMA 4.1. Let

(3.5) Bag(r,s) = / [t§“>(r>a£">(s> + B (1)) (5)—

oB

1 (o
X ><r>«?<"><s)] da - /B [pii{(r)u{®(s)+

(o 1 @)\
+org O (r)e DAV + 7 [P wae
B

+/B [ff“)(ﬁ)uEﬂ)(s) )0 s)-
1

0

W(")(r)ﬁ(ﬂ)(s)] av,
forall v, sel, (o, =1,2). Then |

36) Eap(r,5) = Epa(s, ).

89

COROLLARY 4.1. Assume that the aséumption (i) from Section 2

holds. Then

CRONNE / [tﬁ”*u?’+~h@’>*<p<2>.—%j*-qmme da—

oB
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- / i)+ u® 4 oD 4 gAY 4 — / j gD« 9Pav+
B To vy
s L ‘ To

= / [tgz) * ugl) + A <,o(1) - —l—j *‘qm * 19(1)] da—
o8 To

- / ik x u{) + prg® x D]V + Ti / ixg® w9 Pav+
B 0vg

+ / [ffz) culD 12 4 o) - %—W(z) *19(1)] dv.
B 0

THEOREM 3.2. Let Q(® be a solution corresponding to external
data system N(®), (a =1,2). Then

(3.8) | / p* [t§1> a4 AW @ = L *§<z>] da+
o8 To

+/ [Ggl) * uf-z) + LM 5 ) — TI—P + W « ‘9(2)] dv =
A, 0

= [ oo [ a4k L@ 0] ot
oB Ty

N / [ng) ) £ 1D 10 = Ly w® s 0(1)] v
B 0

where

GS™) = px ££) + plth{® + a{),
(3.9) B
L) = D * j(@) ‘_+ pfc[td(a) + C(a)] (o = 1,2).

4. Applications.

In this section we present some applications of the reciprocity
theorem. We restrict our attention to bodies with a centre of symmetry,
so that D,,;; =d; = a; = 0. Moreovei', we assume that the initial data
are zero. '
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By (3.3) and (3.9) we obtain
(4.1) W = j % 5@ G = px £ L) = p s ()

and the reciprocity relation (3.8) becomes

(4.2) - / [tg” s 4 h @ _ Lo o, 19(2)] dat
o8B Ty

+/ [fz(l) * u1(2) + [(1) * QO(Z) — i:’ % S’(l) * 19(2)} dV =
B To

-/ a4~ L 200
B To

+/ [fz-(z) * ugl) + 1) & o) — —1——j x S 4 19(1)} dv.
B To

In what follows we restrict our attention to the "traction problem?”,
so that 51 = 53 = 55 = QS .
Let us assume that the external system N(!) in which

B = 6(x — y)6()6;;,10 = 0,50 = o,
(4.3)
o) = 5 = ) = g = o,

where é is the Dirac measure, generate the displacement U,.(j ), the
volume fraction () and the temperature 7(). Let PY), 7U) and Q®)
be, respectively, the traction, the equilibrated surface traction and
the heat flux generated by U, () and T(). Let w;, ¢ and ¢ be the
displacement, volume fraction and temperature corresponding to the
external system N® = {f;,1,5 &, h,G,a; = b; = ¢ = d = 0}. It follows
from (4.2) and (4.3) that

B 0

(4.4) +1 / [t} xUE) = PO oy 4 b @ — g 4 oy
oB

+ %gj (9% Q) — (k) (j)] dv.
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We now assume that the external system N, in which
F9 = 0,10 = 8z — y)6(t), 5O = 0,0V = 4V = {V = &V = 0,

generate the displacement U{*, the volume fraction ®* and the
temperature 79, Let P{*), H® and Q¥ be, respectively, the traction,
the equilibrated surface traction and the heat flux generated by U,-(4),
& and T, Let (u; ¢,0) the solution corresponding to the external
system N = {f;1,5,4;, h,§,a; = b; = ¢ = d = 0}. It follows from (4.2)
and (4.3) that

e(y,t) = / [fi «UD +150® - %-j xS *T(“)] dut-
B 0

(45) b Jire 09— PO st R0 - O
o8

+ %-j * (U * Q('4) - T(4) * (j)} dv.

Similarly we can obtain a formula for the temperature field.

The integral representatlons (44) and (4.5) are relations of
Somigliana type.

We now denote by (Pl) thé boundary-initial-value problem
characterized by the field equations (2.1)-(2.4) and the conditions
(2.6),(2.7). If we replace the costitutive equation for the intrinsic
equilibrated body force (2.3) by the following equation

(4.6) | =t

then we obtain a boundary-mltlal-value problem characterlzed by the
equations (2.1), (2.2), (2.3);,3, (4.6), (2.8),5 and the conditions (2.6),
(2.7). We denote this problem by (Pz) It is clear that (P;) is an
uncoupled problem, in the sense that the function ¢ is independent
of u; and 9. Let C) and C’("’) be the solutions of the problem (P)
and (P,), respectively. We assume' that N() (a = 1,2) are the external
data system corresponding tb the problem (Pa) (o =1,2). By a proof
analogous to that of Thebrém 32 1n view of (3.7) we obtain the
following result. :

If a body with a centre df symmetry is subjected to two external
systems N(*®) (a = 1,2), then between the solutions C(®) corresponding
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to the problems (P,) (o = 1,2) there is the following reciprocity
relation .

(4.7) I 10 o) — %-J O 0(2)} dv+

B

+

’tm NN O 90(2) - __J + ¢ % 19(2)] da =

f<2> rulD 1) 90(1) _ 1 J L SO, g(l)} ot
[ 1 4 D @ 4 o) _ 'Tl“ ieq® s 19<1>] dat

+ [ (Bye® —mi®) 4 gWa
B .

We assume that the uncoupled problem P(?) corresponds to
external system

(4.8) 5B = 0,1 = §(z — y)b(t), S@ = 0,{® = 0, A =0,

i) = 0,62t = 9 = 6 = 3fD 0.

Let U, & and T be the displacement, volume fraction and
temperature field generated by this system. If we use reciprocity
relation (4.7) we obtain

(4.9) / [f,.(” U + 10 5+ @ — Tl—j x S(1) & T] dv+
B 0

+/ [{gl) * Ui + Y+ ® — —-1—<j(l) *T] da =
o8 To

= cp(l)(y,t) + /(B;_,'U;,j —mT) * <p(1)dv.
B

Thus, we conclude that the solving of the coupled problem (P;)
corresponding to the external system N() and to the homogeneous
initial conditions is reduced to the solving of the associated uncoupled
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problem (P,) corresponding to the external system (4.8) and to the
solving of the integral equation (4.9) for the volume fraction field.
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