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A NEW APPROACH TO THE THEORY
OF HEAT CONDUCTION
‘WITH FINITE WAVE SPEEDS
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Relations between the physical models describing the heat
conduction in solids and a phenomenological model leading to quasi-
linear hyperbolic equations and systems of conservation laws are
presented. A new semi-empirical temperature scale is introduced in
terms of which a modified Fourier law is formulated. The hyperbolicity
of the heat conduction equation is discussed together with some wave
propagation problems.

1. Introduction.

It was Maxwell [1] who was the first to modify Fourier’s law.
After him there were Cattaneo [2,3] and Vernotte [4]. Hence we will
refer to

(1.1) Tq+q=—kVY

as to M.C.V. (Maxwell-Cattaneo-Vernotte) equation, where 7' > 0 is a
suitable relaxation time, ¥ denotes the absolute temperature, k is the
conductivity and q the heat flux vector.

A number of experimental results confirms the validity of (1.1),
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[5,6]. However, a proper thermodynamic setup for (1.1) is difficult to
form, because of the second law of thermodynamics, [7-9].

The heat conduction phenomenon with finite thermal wave
speeds can be analyzed in the context of the theory of materials with
memory [10-12], in the framework of the theory of the materials with
internal state variables, [13-15], as well as in the scheme of theory
of relativity and of the so-called extended thermodynamics, [16,17].

In [18,19] we have introduced a new temperature ”scale”, related
to the absolute one by a suitable initial value problem. In terms
of this scale the classical Fourier law has been formulated. Here
this model will be applied to wave propagation problems in a rigid
conductor and thermo-elastic body.

2. A new temperature scale.

We make here some physical considerations, starting from the
results proved by Cattaneo in [2].

Consider a gas in macroscopic mechanical equilibrium and let Q
be a given physical quantity related to a molecule of the gas. We will
denote by G the average of Q at a given point of the gas. For the sake
of simplicity we will suppose G be constant on each plane belonging
to a family of parallel planes, orthogonal to a given direction r.
However, the value of G can change from one to another plane so
that, denoting by = a point of » and supposing G be time-dependent,
we get

G =G, 2).

When @ is regarded as the average of the kinetic energy of
the molecules due to translational and rotational as well as to
internal degrees of freedom, the function G differs from the absolute
temperature of the gas for a factor «, depending on the gas. Moreover,
if ¢ means the component of the heat flux vector in the z direction,
it is easily proved that: |

(2.1) ¢ = —kd9/0z + 00> /001,
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where o = Tk. We define
(2.2) - B=9-Tdd/ot.
Owing to (2.1) we get
(2.3) q=—kdp/0=.
Moreover, from the relationship
(2.4) aff =G —-ToG /ot

follows that g is related to the average of the kinetic energy as well as
to its time derivative. The second term in the right hand side of (2.4),
containing the mean acceleration of the molecules, can be regarded as
a contribution of internal forces among the molecules, which usually
are neglected in the statistical definition of temperature. By (2.2) it
follows

(2.5) 0B/0t = 09/0t — TH*V /2.
To eliminate 99/t in (2.5) we can use (2.2) so that
(2.6) d(ap)/ot = (a/T)(Y — B) — TH*(?9) /612,

The last term in (2.6) can be neglected because T is very small
compared with 1/T (the magnitude of T is of the order 10—° =—10-13
second., [5]). Finally we obtain

(2.7) (ap)/0t = (a/T)( = B).

We call (2.7) canonical kinetic equation and the function 8 defined
by (2.7) semi-empirical temperature.

From the physical point of view 8 is the absolute temperature
minus a frictional term due to the internal Van der Waals type forces.
Since the velocities of the molecules are reduced by such forces, the
final result is a drop in the temperature. The most important effect
which is obtained by assuming # as a new temperature scale is the
transformation in the type of the heat equation from parabolic to
hyperbolic. In (2.7) 68/t is equal to a linear function of ¥ and 8. It



98 VITO ANTONIO CIMMELLI - WITOLD KOSINSKI - KATARZYNA SAXTON

is worth noticing that we can change the scale of 3 without affecting
its physical meaning. In order to take into account this possibility
we generalize (2.7) as follows

(2.8) (@B) = faopery(9, B)

where fio k1) 18 @ suitable functional of the material functions
(constants) «, k and T, depending on the semi-empirical temperature
as well as on the absolute one.

The downscript (o, k,T) means that constructing f we need to
take into account those functions; the last equation will be called a
normed kinetic equation. . ;

Let us notice that performing the spatial differentiation of (2.7)
we get the so-called prolongated kinetic equation

(2.9) 0%(apB)/02bt = 0(a/T)(9 — B)/0z.
Using (2.3) to express the gradient of 8 in terms of ¢, we get
(2.10) O(ak=1q)/0t = —(a/T)(09/0z + k™ 1q)

if « and T are constant. The derived equation is very similar to the
1D counterpart of the M.C.V. equation (1.1).

Let us notice that the semi-empirical temperature is uniquely
defined by (2.8) if and only if a suitable initial condition

(2.11) B(x,t6) = Bo

is given and f is Lipschitz continuous. In the case of generalized
kinetic equation (2.8) we make some supplementary assumptions on
f:

a) (8f/0B) < 0; b) (4f/89) > 0.

The requirement a) assures the stability of the solution of (2.8),
while b) is needed in order 8 be an increasing function of 9 and the
natural order relation < between different temperatures be conserved,
when the relaxation time is zero.
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3. Rigid conductor.

Let us consider a particular rigid heat conductor with the constant
relaxation time 7 = 7, > 0, related to a reference temperature 9,; the
factor « in (2.2) is assumed constant also. Physical properties of the
conductor are characterized by the following constitutive relations:

(3.1) %= P9, VB) = 1 (9) + (rok/2p9) V57,

n=179(4,VB), a=a(J,Vp)

and the kinetic equation (2.7). Here V3 denotes the 3D gradient of
B, ¢ is the free energy and n the specific entropy; the conductivity is
assumed temperature-dependent and of the particular form

(3.2) k(9) = k0(19/19(.y)2

where ko, is the heat conduction coefficient corresponding to the
reference temperature ;.

The first and second law in such a case read

(3.3) pé = —=Divq + pr,

pi > —Div(q/9) + p(r/9).

In (3.3) p is the mass density, ¢ is the specific internal energy,
related to the free energy ¢ by the (Legendre’s) transformation
e = ¥ +nJd, and r is the body heat supply.

By substituting (3.1) into the inequality (3.3), we get, by the
standard arguments, the following potential relations

(3.4) n=—0v/09, q = —k(H)V,
together with the residual (heat conduction) inequality
(3.5) -q-Vg<0.

- Due to (3.4), the only consequence of the latter is the inequality

(3.6) k(9) > 0.
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Let us notice that as a consequence of the constitutive assumption
(3.1) and the relation (3.4), we obtain

(3.7) e = &(9) = Y1 (9) — ddy* (9)/dY,

i.e. the internal energy is independent of the nonequilibrium variable
V3. Moreover, the spec1ﬁc entropy function is composed of an
equilibrium term

(3.8)1 n(9) = —dyp* (9)/dd

plus the nonequilibrium one

_ Toko g

From this form it is obvious that the principle of maximum
entropy at equilibrium is fulfilled.

By (3.3) together with (3.2), (8.4) and (3.7) we finally obtain
the following equation, governing heat propagation in the rigid
conductors:

(3.9) pTocy 036 + pe, 934 — 2kooIV B - V B+
—2komodV 3 - VB — ko2 AB — prdk =0,

where the heat capacity ¢, given by dé/dd.

It is a quasi-linear hyperbolic second order equation. Well
posedness of a Cauchy problem for another version of (3.9) was proved
in [20]. The hyperbolicity condition '

(3.10) cokoro > 0

is satisfied if kg, 79, and ¢, are positive.

Finally we underline some interesting properties of field equations
in the case of shock and acceleration waves.

Supposing the body heat supply be continuous across the shock
front, the jump conditions read

(3.11) | pVIel=1la]-N,
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(3.12) VBl =0,

where V and N are the velocity and the normal versor of the shock
wave, respectively, and the symbol f = f* — f~ denotes the jump of
f. The continuity of the new temperature, even in the case of shock
wave, is an essential property of the model proposed and it is a
consequence of the generalized Rankine-Hugoniot relations.

As far as acceleration waves are concerned, let us quote some of
the results proved from [21,22]. It is well known that in the classical
model of conductor based on Fourier’s law, solutions of heat equation
do not blow up in finite time. However, such a behaviour can be
found in materials with thermal relaxation. In [21] the 1D case
of the rigid conductor described here was considered. The following
equation, describing the evolution of the amplitude

a(t) =[Bul= 75 [9,:]

of the acceleration waves, was derived

(3.13) da(t)/dt — nroa® + (279) e =0
where
(3.14) n=2/8" —(2c,) " tdc,/dY

and At is the value of 8 at the shock front. Equation (3.13) is of
Bernoulli type and, for n > 0, its solution «(¢) blows up in a finite
time, if the initial condition a9 = «(0) satisfies the following inequality

(3.15) 2n7'02a0 —-1>0.
The finite blow-up time #; can be calculated to be
tl = 27'0 10g |(2na07-02/(2na07'02 - 1)|

For the special case of the specific heat c,(¥) = co(9/90)* the
amplitude decays along the wave according to the law

a(t) = agexp(—t/270)

and blow-up does not occur.
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In such a case the equilibrium part of the free energy function

P is
(316) ¢1('L9) =eg+e1d+ 62’(95,

where the ¢;’s are constant.

4. Thermoelastic solids;

We recall the balance laws for linear momentum and energy:

(4.1) pv = DivS + pb,

p(e +0.5vv) — Div(S - v) 4 Divq — pbv — pr = 0,

where: p is the reference mass density; S is the Piola Kirchhoff
stress tensor; v and v denote the particle velocity and acceleration;
q denotes the heat flux calculated in the reference configuration.
Here the kinetic equation in its more general form (2.8) is assumed.
Together with (4.1) we face with'the unilateral differential constraint

(4.2) pn 2 —Div(q/9) + p(r/9),

representing the second law of thermodynamics. As usual, we rewrite
(4.1) in a more suitable form by using the free energy

(4.3) Yp=¢c—19J7

and assume the following constitutive equations:

44 Y = ¢*(9,F,Vp), n=n(F,Vp)
' a=q*(4,F,Vp), S=8*(9,F,Vp)

Owing to (4.2), (4.4) we get

(4.5) 8 [09 = —n, pdb/OF =S, —pdp/OVA(HF/0Y) = q

and the reduced inequality

(4.6) a(81/VBY(05/09)~* - V8 > .
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Let we make the additional constitutive assumptions

(4,7) ¥ = a(P)(trFET — 3) + b(¥) + 0.5(komo/pP0) VS,

q-= “’kﬂv/ga

where a(9) and b(9) are suitable functions of the absolute temperature
If, as in the case discussed in [23], we assume

(4.8) T =19, f(9,8) =9°75 " log(9/90) — (B — Bo)/ o,

then we can rewrite the balance of linear momentum (when the body
forces vanish and p is constant) as follows

(4.9) i+ AAu+B-Vu+B =0,

where:
A=-2a B=-2dVY,

u is the displacement vector; the symbol ' means the derivative with
respect to J.
On the other hand, owing to (4.1), and (4.8) we get

(4.10)  70DB + DB + koroV - V — koo AB — pridg — 9gAVu - Vi = 0,

(4.11) D = —pd2[a” (trFET = 3) 4+ b"].

The coupled system (4.9)-(4.10) can be written as a first order
system if we put

H=Vu, z=Vg, "/::ﬁ..
and a material system of coordinates X is assumed. We get so
(4.12) z)i+A'0H,-,»/8X,- +BjH,'j +C =0,
oD% 4+ Dy + koTozizi — ko9e0z [0X; — prdo — 9o AHi; Hij = 0,

% -—-‘37/6}(; =0, H;j -—-‘8’0;/8)(]' =0.
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Some straightforward calculations show that (4.12) is a quasi-
linear first order symmetric system provided 4 is positive. This proves
the well posedness of the local Cauchy problem for (4.12).

As far as acceleration waves are concerned, in thermoelastic
materials blow-up could occour even if 7o is equal to zero, [24]. In [22]
an evolution equation for the amplitude was derived for thermoelastic
solids with thermal relaxation.

This is again of Bernoulli type and similar to the equation
obtained in [24] when T, is equal to zero.
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