LE MATEMATICHE
Vol. XLVI (1991) - Fase. I, pp. 107-115

LINEAR ASYMPTOTIC STABILITY OF GEOPHYSICAL
CHANNELED FLOWS IN THE PRESENCE
OF ARBITRARY LONGITUDE-SHAPED PERTURBATIONS

FULVIO CRISCIANTI (Trieste) - RENZO MOSETTI (Trieste)

Sufficient conditions for the linear asymptotic stability of large
scale wind-driven oceanic flows are derived in the presence of arbitrary
longidude-shaped perturbations. Criteria work when both bottom
dissipation and lateral diffusion of relative vorticity are simultaneously
present. The stability is controlled by the maximum of the shear of
the basic flow and by the maximum of its meridional derivative and
involves the dissipation-diffusion coefficients.

1. Introduction.

The geophysical relevance of channeled flows, i.e. flows ideally
confined between two “rigid walls” coinciding with a couple of Earth
paralles, comes from the fact that, in a rotating planet, steady
zonal flows are able to mantain themselves without any external
forcing and moreover they are the simplest flow configurations in the
presence of a longitude-independent, (in case unsteady) forcing. The
main features of the large-scale dynamics of such flows are based
on the hydrostatic equilibrium and the geostrophic balance. With the
aid of these observational facts, the classical Navier-Stokes equations
referred to a rotating system can be properly scaled to obtain the so
called "quasi-geostrophic” vorticity balance of the fluid bulk inferior
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that, in the absence of density stratification, takes the standard form:

(1) gt V2 + J(3, V2 + By) = F — vV + AV

where 1 is the streamfunction (z being longitude and y latitude), V2
is the local vorticity that is the vertical component of the curl of the
geostrophic current
o 0y
| oy T 0
g is the planetary vorticity gradient coming from the latitudinal
variation of the Coriolis parameter, F is a forcing term that may be
the wind-stress curl hereafter assumed longitude- independent (in
case unsteady) —rVZy is the bottom dissipation term coming from the
Ekman benthic layer and finally AV%y describes the lateral vorticity
diffusion.

For a review of this dynamics see for instance Hendershott, 1987
and Pedlosky, 1979.

In what follows, both » > 0 and A > 0 will be assumed.

Boundary conditions on % come from the physmal requirement
of no mass flux across the walls, i.e.

M\ _ [0y _
(%),- (), -
where y; and y, are the wall latitudes, while the lateral vorticity
diffusion term implies further boundary conditions: here the choice

(3) ’ (v2¢)y1 = (V2¢)y2 = 0

will be made.

An important feature of problem (1), (2) and (3) is that, once
that the input F(y) is specified, zonal solutions t,(y) exist. In fact,
putting VZy, = ¢o, the problem above is simplified into the following
one:

F(y) — rgo + Agoyy = 0

90(yr) = qo(y2) = 0

which trivially admits a unique, solution, from which (y) follows,
apart from a vorticity-vanishing term, unrelevant from the stability
point of view.
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In this context the linear asymptotic stability in the energy norm
of the zonal solution, say v(y) of the so posed problem is investigated
from the point of view of the ”a priori” properties of the related linear
perturbation equation

9 O 9V? ik '
(4) ?97v2¢ - 6‘20 .aj + (%;@0 +ﬁ> g“:‘ = —rV%¢p+ AVig

where ¢ = ¢ — 1.

We recall that a basic state is asymptotically stable if the kinetic
energy of every perturbation superimposed to it satisfies the following
relationship: |

(5) lim K(t)=0

Relation (5) is clearly stronger than the one required for the
stability in the energy norm, wich only requires

dK
_CF <0

Asymptotic stability criteria can be obtained by using ”a priori”
estimates through inequalities which in turn imply relation (5). In
this work the following conditions are employed:

>

dK 91
7+a K <0

and -
K(t) < A*(t) where Jim A%(t) =0

a’ and A? being definite quantities.

We want to stress that the corresponding non-linear problem
cannot be fitted into the Arnold’s method. On the other hand, the use
the direct method of Lyapunov, apart from some specific problems
(Benard convection and Couette flow), have not proved very useful
yet (Drazin and Reid, 1981; p. 431). This justifies the investigation
of different methods in the hydrodynamical stability theory. In a
non-linear context, stability criteria for flows confined in closed
basins have been obtained by Crisciani and Mosetti, 1990. For zonal
flows criteria for stability in the energy norm independent from the
perturbation wave-number are reported in Crisciani and Mosetti,
1991.
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2. Wavenumber-dependent stability criteria.

As the basic state v, does not depend on the latitude =z, the
perturbation can be written as

¢ — B(y, t)eikx

and inside the volume element (0<e<L, -D<2<0, y1 <y<ys)
the perturbation kinetic energy takes the form

(6) K = 5 DL(|B,P + 1B

1=/ 1 pay

Y1

where:

Now, if equation (4) is multiplied by B* (the complex conjugate
of B), the complex conjugate of Eq. (4) is multiplied by B, the results
- are added and then integrated from y; to y,, the following equation
holds:

[y lI* + k(1 BII%) + 2r(I|By|1” + || B[|?) =
Y2
= =2k | doyy Im(B"By)dy — 2A([| Byy 1>+
Y1

+ 262||By |1 + k*||B|]?)

=7 (l

Taking into account the inequality

Y2

¢0yy[m(B;B)_dyl <at max [boyy| |By])?

Y1

where a = yzf,yl we obtain
(7) DIL ddft{ +r(||Byl” + k(| B||*) + A(||Byy|I* + 2k2(| By |17 + &*(|B||%)| <

< a'llkl m)'gxx |¢0yy| ”By”2

Due to the definition of the kientic energy of the perturbation,
the following equality holds

5 2K

1Buy? 4+ 2Ky P + KAUBIE = (1B 12+ KB, 7 + 425
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So, by substituting this into inequality (7) we have

1 dK 9 2 2 2 2 2, 2K
51 3 T B + EPIBIP) + AUBy I” + Bl + 57

K) <

< o[kl By ||

and, from this the following inequality holds:

1 dK , -
@ g (oA < (Mt = Al = B

where: p2 = max|qol.
y

Now, if
i) (@ lpy)2 —4Ar <0
then the r.h.s. of Inequality (8) is always negative and therefore

lim K = 0;
T+ 00

i) if [k| < gl pz — /(a7 p2)? — 44r)]
again the r.h.s. of Inequality (8) is negative and

7:lim K =0.
Observe that condition i) already is a criterion independent from

the perturbation wavenumber k.
To proceed further, if Equation (4) is multiplied by

B;, - k*B*
and the same procedure as above is adopted, putting for shortness
M = By, — k*B
the inequalities

d
I+ 2l < (42 - k)

and

d p
L s oaripape < (42 ) iy
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follow, where

H3 = mfquoyl'

Since -
2k?
2y 4F ..
1M 2 ==K
if:
iii) |k| > (£2)"°
or if

iv) |k| > £> then, recalling what has been stated in section 1,
Iim K =0
t—00

follows.

3. Wavenumber-independent stability criteria.

At this point it is useful to denote the set of real numbers where
Inequalities ii), iii) and iv) are separately verified, that is to say:

Da={o: kel < gplo™is = V(@ TP 1))

3 )1/3}

Dc:{x:]xlzﬁf—‘i}

Db:{:czlrclz

~~
> 5

Now, if D,UDy = IR or D,UD, = IR, every wavenumber k satisfies
at least one of the above inequalities and the asymptotic stability
holds not only for plane wave perturbations of the kind:

¢ —_ B(y, t_)eikx

where k is an arbitrary wavenumber but, due to the linearity of the
perturbation equation, also for perturbations of the kind '

= / B(y,t, k)e** dk
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the integral being any Fourier superposition of plane waves in the
configuration space. It is easily seen that criteria deduced in this way
take respectively the form

@) 51 o7~ (o T — 1) > 2

b) —2%—4— [O‘_lﬁtz _ \/((a_l,/-‘zi)_z _ 4Ar)_} > (_%) 1/3
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Fig. 1 - Relation between p; and ps obtained by applying the stability
criterion a) for Reynolds number = 10 and r = 1. The region below the
curve is that in which the stability is ensured.

In Figures 1 and 2, the stability regions in the plane us, us are
shown for inequalities a) and b). The results are in nondimensional
units obtained by scaling a) and b) after the definition of the Reynolds
number.

4, An example.
Let us consider a typical channeled basic flow as in Kuo, 1973

2
ug = Ups cos? _%y_
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Fig. 2 - Relation between u, and p3 obtained by applying the stability
criterion b) for Reynolds number = 10 and r = 1. The region below the
curve is that in which the stability is ensured.

In this case
Po = QWKM— a=L
L L
If we apply criterion i) by taking some typical oceanic values for
the coefficients of lateral diffusion of vorticity and bottom dissipation
(in S.I. units)
A~10* r~10"7
the following inequality guarantees the linear asymptotic stability of
the basic flow

Up < 1072

This is the typical order of magnitude for quasi-geostrophic
currents and so this kind of flow can reach stability for reasonable
values of the diffusion-dissipation parameters.
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