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TRANSPORT PHENOMENA IN A PLASMA.
QUASILINEAR THEORY

ENOS D’AMBROGIO (Trieste)

Making use of a recently developed quasi-linear formulation of 1D
Vlasov equation, we derive the balance relations for the space-averaged
distribution function and spectral power density. The validity-range
in the short-time behavior as well as in the time asymptotic limit
is discussed. The formalism is perturbative but non-markovian in
character, as it formally generalizes, and in the appropriate limit
reproduces, Pocobelli’s kinetic theory.

Si presentano le equazioni di bilancio per la funzione di
distribuzione media e la densitd di potenza spettrale, sulla base
di una recente formulazione quasi-lineare per l'equazione 1D di
Vlasov. Si discutono le condizioni di validita sia nel breve termine
che nel limite asintotico. Il formalismo & di tipo perturbativo ma
non-markoviano, in quanto formalmente generalizza, e nel limite
appropriato si identifica con la teoria cinetica di Pocobelli.

The application of the quasi-linear (QL) approximation to
transport processes in weakly-turbulent plasmas, as well as the
fundations of the theory, have been investigated since the early sixties
[1]. In order to extend the investigations to more general situations,
involving, e. g,. trapping-particle dynamics and radiation scattering
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phenomena, a detailed knowledge of the orbit perturbation during a
sufficiently long time of the particle motion is in order. In the Dupree-
Weinstock theory of strong turbulence [2, 3], the role of the time-
propagator U(t,0) on the transition between Eulerian (z,v)-variables
and Lagrangian (z(t),v(t))-Vlasov-orbits, in an arbitrary function
G(z,v), is basic to understand the description of turbulent transport
within the framework of Vlasov-Poisson equations description [4, 5.
The same is true when using the Fokker-Planck equation analysis.
[6] Explicit “orbit function” calculations may be found, e. g, in Ref.
[7] and [8]. A common situation in the formalism we are reffering
to, is the truncation of the Vlasov-cumulant hierarchy and, more
or less questionable cut-off techniques in treating phase-mixing
terms. As a result one is led to consider with novel interest the
possibilities provided by the QL approach, in order to avoid the
ensemble averaging technique when dealing with problems which
are rather coherent in character. Actually, the question of how exact
the QL theory is, has been investigated. [1, 9, 10] Still, we feel
that the discussion is, in some aspects, not conclusive. On the other
hand, we appreciate the advantage, in simplicity and time saving, by
avoiding -possibly- all the details of the perturbed particle trajectory.
Looking for a time-evolution problem involving the one-particle,
space- averaged distribution function Sf(z,v,t) = F(v,t), in which

L
f(z,v,t) : RO R® Rt — Rt and S = (I/L)/ de, Vlasov equation is
b ,
replaced by the set

(1) (8 + SL)F = —S(L'f')

(2) (0 + L')f = —d'0, F,

where quantity « denotes the electrostatic field-acceleration of
electrons, SL = Sad, and L' = v8, + a’d,. Solving eq. (2) for the
fluctuating perturbation f'(z,v,t), it is our aim to derive an explicit
expression of the correlation function on the RHS in (1). Using
standard notations [3], the formal solution of (2) should be expressed

1
in terms of the operator Us(t',t) = exp [— / L (t”)dt"} , but, according

tl
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to the spirit of this work, we will solve (2) within the framework of
the QL approximation. According to, the solution reads

f' = Ul(to,t)f(to) — / U(t',t)(a' 0, F)(t')dt'

(3) U(t',t") = exp[(t' — t")vd;).

Of course, informations on the following questions should possibly
be extracted: i) to what extent, if any, wave-particle interactions, can
be described by solution (3) and, ii) what kind of transport equations
will result from the formalism.

Question i) implies that, w. r. to the conventional QL treatment,
our findings should be sufficiently non-markovian in character. We
know [2] how this point is associated with a correct treatment of
the operator U(#',¢”) in eq. (3). In more recent jears, non-markovian
calculations in kinetic theory of a 1D plasma model have been
performed [11, 12], following two different approaches of perturbative
type. The main aim of this lecture is to show that the two routes are
fully equivalent, in the sense we will discuss herewith.

We start by following first the approach presented in paper 11.
In virtue of the theorem of conservation of Vlasov solution along the
characteristics

(4) f(:c,v,t) :f(xo,vo;to%

where z, and v, ( both functions of the arguments z,v,t,,t) solve
the characteristic equations v = dz/dt and a = dv/dt. Defining the
Eulerian velocity- and space- perturbations to the free-flight v/ = v, —v,
g’ = ¢, — z, and introducing a Taylor expansion in the Fourier-series
of the initial (t,) perturbation, one obtains from eq. (4) the following
expression for the Vlasov solution, correct to first order in the velocity
perturbation v’

(5) F(t) = F(to) +v'0, F(to) + Y _ fi(to) explik(z — v(t — t,))].

k!

In this paper ¥’ means k # 0. Introducing a similar Fourier-
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expansion for the stochastic acceleration ao(z,?)
(6) d = Z ax(t) exp(tke),
k!

the resulting correlation function is

(1) S(adyf") = a_p(t)0, (fi(to) exp[—ikv(t — to)] + vy, F(t0)),
kl

in which v; is the Fourier transform of quantity +'.

As pointed out in [11], perturbation v’ plays a crucial role in the
theory. At this stage, looking for an explicit expression for vz, we will
proceed by introducing an alternative approach of perturbative type.
To this end, we go back to consider (3), noting that, with the same
periodic b. c. leading to (7), Fourier-transforming expression (3) gives,

(8)  fr(t) = fr(ts) exp[—tkv(t —to)] — / ar ()0, F(t") exp[ikv(t’ — ¢)]dt’.

to

Assuming that envelope amplitudes and space-averaged distribu-
tion function are varying on the same time-scale, it is advantageous to
introduce a two-time-scale analysis, by eliminating the HF Langmuir
oscilations from the evolution problem. To this end we put

(Fi(8); ar(?)) = (Fr(2); A(2)) expliw(to —t)]
(9)

w=w +iy (W, = —wl g,k = v-k real),

and perform the integration w. r. to time by expanding amplitudes
and equilibrium distribution function according to

(10) A0, F(t) =) Co(t' = "), (1 € [to,1]).
As a result we get

/ ar ()0, F(t") explikv(t’ — t)]dt' =

to

(11) Ik (to,t",t)Ak(t”u)‘B,, F(t”f),

Li(to,t",t) = 3 ITVOR, Li(te,t" =1, = 1) = 0.

n=o
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The expressions of the first two terms are the following

1 - exp[sz(to —t)]

(o)

(A = kv —w),

and, respectively

1 —exp[iA(to—t) t—t"+ (" —ty)exp[iA(to—t
13y 1V = = + ( ) )]

Collecting the expressions (8) to (11), we arrive at the following
expression for the correlation function

S(a’d, ") = Z exp[2v(t — to)]A_k(t)'au (Fi(ts) exp[iA(to — t)]—-
v

(14) _ Z I,(c”)@?flk ()0, F(t)|s=t1r).

n=o

Concerning the convergence of the time-series and truncation
criteria in expression (14), they will depend on the choice of time "
(we are free to select for ¢/ any value between ¢, and t), which in
turn is dictated by the physical situation at hand, diffusion-(#” ~ ¢)
or, evolution-like (¢{” ~ to) process. We find interesting to examine
separately the two cases ¢ =t, and ¢/ = ¢. For ¢/ = t,, a direct
comparison of two expressions (14) and (7) is possible. It is easily
seen that, at the lowest significant order (n = 0) in expansion (10),
the expression of velocity perturbation is

(15) vi = —I{") Ay (ts) expliw(t, — t)).
To the same order, the diffusion coefficient D has the form

(16) D= Z exp[2y(t — to)]I,EO)A_k(to-)Ak (t0).
o

Quantities (15)and (16) correspond, in our notation, to formulas
(24)and, respectively (30), of paper [11]. After insertion of our
correlation function (14) into (1), we see that the resulting evolution
equation reduces, to the lowest order and for the same b. c.,
exactly to the evolution equation as given by formula (39) in the
same paper. [11] According to this argument, we will consider
expression (14) as a generalized, non-markovian correlation function,
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useful to properly describing wave-particle interactions such as
trapping-particle dynamics, as discussed in Pocobelli’s paper 11.

To that extent, we also notice that expression (16) of the
diffusion tensor, emerges in studying Landau-ballistic correlations.
[13] Next we consider the case ¢ = t. This case allows for a simple
comparison of our findings with conventional continuity equations in
transport phenomena. In the long-wave-lenght (radiation-) region of
the wave-spectrum [1], we should also take into account in (14) first
order (n = 1) terms. To see this, let us define the spectral wave-energy
density

W= Wi(t)exp[2y(t — to)],
(17) d |
Wi (t) = A-x(t)Ar(t) /297,

Q the Langmuir frequency of the electrons.
Recalling the energy conservation

(18) %) (W+ / (sz/Q)dv) =0,
R

it is not difficult to chek that the following single-mode evolution
holds

(19) T8, Wy + 20, Wy, = ReT, A_y, + TsImA_;8; Ay,
" in which
(20) Ty =1-:Q? / v, F(t)Red, I\ dv,
R
(21) Ty =7y — Q2 / (8, F()ReI\”) + 0,8, F(t)Red, I{")vdv),
R
(22) Ty = —iQ)? / 8, F()Imd,, I\ dv
R
and

(23) L, = /exp[iA(to — )] Fy(to)vdv.
R



TRANSPORT PHENOMENA IN A PLASMA. QUASILINEAR THEORY 133

Looking at the time-behavior of the coefficients listed above,
calculations show that we are faced by a situation which is typical
in QL theory, i. e. the occurrence of resonant secularities and the
development in velocity-space of growing oscillations. In this respect,
the analytical validity of present analysis is restrlcted to a sufficiently
short time-range.

We have some remarks. Balance eq. (19) has been written in a
form which is amenable of applications in studying: 1) the inclusion
of mode-coupling terms, as given by the coupled-mode theory of
coherent interactions. Eq. (19) then, will contain fourth-(and higher-)
order terms in the field amplitudes; 2) effects which are lost in
time-asymptotic calculations, and, possibly, new effects. In particular
we are referring here to the inclusion of transients associated with
the initial data as given by the evolution function (23).

As a conclusion we observe that even in the asymptotic time-
limit eq. (19) is consistent with the well-known result concerning
the partition of the spectral power-density between slow (v « w/k)
and resonant particles. [14]. To see this, it is sufficient to assume
that the envelope amplitudes are saturated, in that limit. Using the
asymptotic formula

24 lim I( °) = 76(ReA) + Pt ,
( ) RQA(t—to)—»oo ( ) (R A)2

§ and P denoting the Dirac-delta function and, respectively the
Cauchy-Principal value, one gets, for resonant particles, the balance
relation

(25) oW = — f Fv?dv/2
ReA:D

expressing the fact that the energy gain of the spectrum is just one
half the energy loss of the resonant particles. For energy conservation
then, the energy gain of slow particles is given by

(26) W = / Fvldv/2
v&w/k
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