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STABILITY OF NON-PARALLEL FLOW
IN A CHANNEL

PHILIP G. DRAZIN (Bristol)

This is a review of several generalizations of Hiemenz’s classic
solution for steady two-dimensional flow of a uniform incompressible
viscous fluid near a stagnation point on a bluff body. These gene-
ralizations are diverse exact solutions, steady and unsteady, two-and
three-dimensional, of the Navier-Stokes equations. The solutions ex-
hibit many types of instability and bifurcation. There are turning
points, transcritical bifurcations, pitchfork bifurcations, Hopf bifurca-
tions and Takens-Bogdanov bifurcations. The solutions also take the
period-doubling and Ruelle-Takens routes to chaos.

1. Introduction.

In 1911 Hiemenz [14], investigating the flow of a uniform
viscous incompressible fluid near a stagnation point on a bluff body,
assumed that flow was steady and two-dimensional with Cartesian
velocity components of the form

(1.1) u =z F'(y), v =—F(y), w =0,

for some function 7. He substituted this similarity solution into the
Navier-Stokes equations, and deduced that

(1.2) vF" + FF" —~ F'? 4 8 = 0,
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where v is the kinematic viscosity of the fluid and § is some constant
related to the pressure gradient. He further assumed that there is
a rigid plane wall (representing the surface of the body near the
stagnation point at the origin) at y = 0 and that the flow is bounded
far from the body; this gives the boundary conditions that

F=F'=0aty=0
(1.3)

F’ is bounded as y — oc.

See, e.g., [22] p. 152 for more details, including computational
results, of this classic exact solution of the Navier-Stokes equations.
We shall discuss several generalizations of this similarity solu-
tion, especially some recent ones. In this section we shall give the
equations of the generalizations. In the next section we shall give
various physical problems and their associated boundary conditions,
and in the following section we shall review some of the recent
literature on the solutions of the various boundary-value problems.
Homann [15] obtained the analogous solutions for axisymmetric
steady flow at a stagnation on a flat plate by assuming that

(1.4) u= zF'(z), v = yF'(2), w=—2F(z).

Howarth [16] went further, obtaining solutions which are not neces-
sarily two-dimensional or axisymmetric, by taking

(1.5) u = 2F'(2), v = yG'(2), w= —F(z.-) — G(2)

where G may differ from F to give a three-dimensional flow. This
leads to a coupled pair of ordinary differential equations for F and
G. If G is identically zero then we regain the problem of Hiemenz,
and if G = F for all » we regain the problem of Homann.

Danberg and Fansler [10] considered a wall which moves and
also extrudes steadily, taking essentially the similarity form,

(1.6) u=aF'(2)+ G(y), v=—F(y).

Terrill and Shrestha [30] applied Hiemenz’s similarity form (1.1)
to steady flows with a transverse magnetic field. Rajagopal et al. [20]



STABILITY OF NON-PARALLEL FLOW IN A CHANNEL 139

have applied the form to steady flows of a class of non-Newtonian
fluids. ‘

In 1962 Proudman and Johnson [18] considered unsteady two-
dimensional flow near a stagnation point, taking

(1.7) u=2f,(y,1), v=—f(y,1), w =0,

where f may depend upon time ¢ as will as y, and a subscript
denotes partial differentiation. This and the Navier-Stokes equations
lead to the equation

(1'8) fyt :nyyy+ffyy“fy2+ﬂ;

where 8 may now be a function of {. We differentiate this equation
partially with respect to y and find

(1.9) fyyt:l-’fyyyy"”ffyyy—fyfyy’

calling this the Proudman-Johnson equation. It can be seen that
this is like a nonlinear diffusion equation; it is also a fundamental
equation analogous to the Kuramoto-Sivashinsky equation. It and
its steady form,

(1.10) vF% £ FF" — F'F" = 0,

which is the differential of equation (1.2), are the chief subject
of this paper. (The Howarth problem also can be generalized for
unsteady flows [27].)

We shall here ignore other similarity forms, such as that of
Blasius, and their generalizations, interesting though they are.

A few elementary solutions of these equations are well known.
It can be seen by inspection that f = a(t) +b(t)y is a solution of the
Proudman-Johnson equation for all functions a,b. Also F = v+ Be=¥
is a solution of the steady equation (1.10) for all real B and v. We
can extend this a little, by taking f = a(t) + b(t)e=7¥ for arbitrary «

provided that

db
7o y(yv — a)b.

Similarly we may take f = a(t)+b(t)e~"Y +e(t)e’. Boulanger et al. [2]
§6 elaborate some of these solutions. Cariello and Tabor [unpublished]
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have shown recently that the Proudman-Johnson equation fails the
Painlevé test, so we expect the equation to be nonintegrable, not to
have soliton solutions etc.; they also found some special analytical
solutions of it in similarity form.

2. Physical Problems and Boundary Conditions.

The need to separate U?3° from U?3® in the 1940s posed
the problem of separating the isotopes in the form of uranium
hexafluoride by gaseous diffusion. Berman [1] modelled this by flow
in a two-dimensional channel with uniform suction through porous
walls at y = —h, h. Thus he used Hiemenz’s equation (1.2) and the
boundary conditions that

F=V, F'=0 at y=-h,

(2.1)
F=-V, F'=0 at y=nh

In fact Berman confined attention to flows symmetric about the
centre plane, y = 0, of the channel, i.e. to those solutions with
F =0, F/ =0 at y = 0. This problem has also been used to model
flow around turbine blades with suction through their surfaces. An
asymmetric form of the problem with asymmetric solutions was first
considered by Shrestha and Terrill [24] in 1968.

Raithby and Knudsen [19], Brady [3], and Durlofsky and Brady
[12] examined, by using various numerical and asymptotic methods,
the development downstream of steady perturbations of flows of
the Hiemenz similarity form (1.1). They did this for symmetric
flows with Berman’s boundary conditions at the walls. They thereby
put the Berman solutions in a more realistic context, because the
development downstream gives the flow in a channel of finite length.

Crane [9] used equation (1.2) and the boundary conditions that
F=0, F'=FE at y=0,

(2.2)
F’ is bounded as y — .

This represents a wall accelerating away from the origin in its own
plane. The flow inside a long slender drop in an extensional flow [4]
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has led to use of equation (1.2) and the boundary conditions that

F=0, Fl=—-FE at y=-—h,
(2.3)
F=0, FF=FE at y=h;

again, attention was initially confined to symmetric solutions of
conditions (2.3) for a channel.

P. Watson et al. [32] generalized these sets of boundary condi-
tions, taking

(2.4) f=FVy, fy=FE+ at y==h,

where V,,V_,FE,,E_ are general constants. (They also may, indeed,
be functions of ¢.) In particular, if £ = 0,V_. = 0 then there is
suction at the wall at y = &, and the other wall is impermeable and
fixed.

Drazin et al. [11] took f or f—y to be a periodic function of
y for all ¢, and mentioned the solution of the Proudman-Johnson
equation also over the infinite interval —oo < y < 0.

3. Some Solutions of the Boundary-value Problems.

The problem of Hiemenz has been re-examined recently in
the context of the current interest in the possibility of ‘blow-up’,
i.e. of the development of a local singularity of the Navier-Stokes
equations in a finite time. For the Hiemenz problem, or rather the
Proudman-Johnson problem, it is clear that blow-up may occur for
the special case of an inviscid fluid ([5], [26]), but there is not yet
conclusive evidence that blow-up may occur for a viscous fluid (see
[8], [6D).

The Berman problem (1.2), (2.1) for symmetric steady flows
in a channel was the subject of several numerical and asymptotic
papers in the 1960s and 1970s, e.g. [28], [29], [19], [21]. It emerged
that there is one solution for all values of the Reynolds number R,
which we define by R = Vv/h, together with a pair of solutions for
R > R3, where R3; ~ 12. At R = R3 there is a turning point, where
the pair of solutions coalesce.
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For R <0 (i.e. for injection rather than suction at the walls),
Skalak and Wang [25] proved the uniqueness of the steady symmetric
solution of the Berman problem. Shih [23] proved that this solution
exists. Cox [7] proved that there is no asymmetric steady solution
for R < 0. Of course, we are confident that the Berman solution is
not unique for R > Rj.

In 1988 Zaturska et al. [33] considered the unsteady Berman
problem (1.9), (2.1), allowing asymmetric as well as symmetric
solutions. They, in particular, considered the steady solutions and
their stability, using a variety of asymptotic, numerical and geometric
methods to give some conviction to their results, but proving nothing.
They showed that the first symmetric steady solution which had
been found is unstable for R > R,, where R; ~ 6, and that each of
the pair of symmetric steady solutions which exists for R > Rj is
always unstable. There is a pitchfork bifurcation at R = Ry, and two
asymmetric steady solutions exist for R > R;. This pair of solutions
in turn becomes unstable for R > R;;, where Ry; ~ 13. There is a Hopf
bifurcation at R = R;;, and two time-periodic solutions for R > Ry;.
These periodic solutions become unstable quite soon as R increases
further, and a complicated sequence of bifurcations occurs, in which
there seem to be quasi-periodic as well as periodic solutions, with
period doubling and phase locking. This sequence ends at R = Rj,
where R, ~ 20, and a symmetric pair of homoclinic connections
forms in the phase space of the solutions. As R increases above Rj,
chaos ensues; it seems to be low-dimensional, and is reminiscent of
the chaos of the Lorenz system (with the standard values of the
parameters b and o) at its onset.

Cox [8] showed that if the Berman problem were rendered more
than slightly asymmetric by taking unequal suction velocities at the
walls of the channel then the chaos would no longer occur. So the
discovery of chaos at as low a value of the Reynolds number as 20
may not be as easy to realize in a laboratory experiment as appears
on first thoughts.

Hiemenz’s equation (1.2) and boundary conditions (2.2) for
accelerating walls were solved by Crane [9], who found the exact
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explicit solution,
(3.1) F(y) = yu(1 — ™),

 where y = (E/v)3. McLeod and Rajagopal [17] proved that this is
the unique steady solution.

Brady and Acrivos [4] treated symmetric steady flow in a
channel with symmetrically accelerating walls, i.e. the problem
(1.2), (2.3). It is somewhat similar to the Berman problem.

E.B.B. Watson et al. [31] considered unsteady flows in a channel
with symmetrically accelerating walls, i.e. the problem (1.9), (2.3),
allowing asymmetric as well as symmetric solutions. They found
transition to chaos not only as R = Ev/h increases, but also as it
decreases below zero. The sequence of bifurcations as R increases
is qualitatively similar to that found by Zaturska et al. [33] for the
suction problem, but the quantitative details are very different. The
sequence of bifurcations as R decreases below zero begins similarly,
but chaos ensues after a Feigenbaum sequence of period doubling.

P. Watson et al. [32] considered the problem with asymmetrically
accelerating walls. They found not only the bifurcations mentioned in
the previous paragraph, but also some Takens-Bogdanov bifurcations.

4. Conclusions.

These problems and their solutions not only provide an in-
tellectual challenge to applied mathematicians interested in waves
and stability in continuous media, but also serve more important
purposes.

The boundary-value problems, although they are somewhat
idealized, have the engineering applications we have mentioned.
Certainly, it is not easy to make laboratory experiments to compare
with the solutions. Only one experiment has been recorded [19].
The results seem inconclusive, perhaps because the experimentalists
were looking for steady symmetric flows which we now know to be
unstable.

The solutions are all ‘exact’ solutions of the Navier-Stokes
equations. Such solutions are significant as prototypes to be used
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to understand and interpret a variety of related flows which are
similar in at least part, as well as additions to the menagerie of
exact solutions. The exact solutions of the Navier-Stokes equations
have, of course, a long tradition of use in this way.

Lastly, the problems we have mentioned are excellent for teach-
ing the theory of hydrodynamic stability. They are quite simple
problems to illustrate the general concepts and methods of linear
stability, nonlinear stability and transition to chaos. The techni-
cal difficulties of their solution are much less severe than those
for the full Navier-Stokes equations. In this sense the Proudman-
Johnson equation serves as a model, as well as a special case, of
the Navier-Stokes equations: we use synecdoche. The basic flows we
have considered vary with the governing dimensionless parameters,
e.g. the Reynolds number, in a way much more typical of realistic
flows than the state of rest in Rayleigh-Bénard convection, the plane
parallel flows of the Orr-Sommerfeld problem, or the Couette flows
of the Taylor problem. This is because the basic flows mentioned
here are themselves solutions of nonlinear problems, whereas the
state of rest, the plane parallel flows and the Couette flows of the
classic theory of hydrodynamic stability are themselves solutions of

linear problems.
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