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LARGE-TIME BEHAVIOUR OF SOME FULLY DISCRETE
KINETIC MODELS IN BOUNDED DOMAINS

E. GABETTA (Milano) - L. PARESCHI (Ferrara)

We investigate the large-time behaviour of the fully discretized
versions both of the three velocity Broadwell model and of the four
velocity model in a strip. We analize the different behaviours on the
light of some recent results by M.Slemrod [7] and C.Cercignani [3].

1. Introduction.

One of the most interesting problems of the kinetic theory
of rarefied gases is represented by the analysis of the large-time
behaviour of the solution to the Boltzmann equation.

The results available for the fully nonlinear spatially dependent
Boltzmann equation in a bounded domain have been proposed in the
last years by Arkeryd [1], DesVillettes [4] and Cercignani [2]. These
-results, which have been made possible by the fundamental work of
‘DiPerna-Lions [5], confirm the old claim that the evolution of the gas
in a domain bounded by solid walls kept at constant temperature
should tend to a Maxwellian distribution. -

The situation is quite different in the case of the discrete velocity
models, where only partial answers are known.

In a recent paper, M.Slemrod [7] studied the time-asymptotic behaviour
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of the solution of the reduced Broadwell model in one-dimension of
space, in a strip with boundary conditions of specular reflection. He
found that the global solution converges in the weak* topology of a
suitable Orlicz-Banach space to travelling waves without interactions.
His theorem is not enough to prove decay to equilibrium, and the
author himself has not clarify wheter this is a consequence of the
failure of the analysis or a patology of the model.

Another interesting example has been proposed by Cercignani
[3]. He discovered that the solution to the one-dimensional in space
four velocity model by Gatignol, namely the plane Broadwell model
with velocities turned out of 45 degrees with respect to the walls,
manifests a trend towards travelling waves, and gave the explicit
form of the solution.

Both the quoted results confirm that there is a considerable
difference between the Kkinetic theory with a continuous velocity
variable, and the discrete kinetic models.

To improve the knowledge about the asymptotic behaviour of
the reduced Broadwell model, the authors introduced in [6] a fully
discretized kinetic model. In the same paper it was shown that this
model possesses a solution that approximates the solution to the
true Broadwell model, but, in apparent contrast with the Slemrod’s
result, the solution to this new model manifests a trend towards the
constant state (global equilibrium).

The aim of the present paper is the comparison between the

Cercignani’s result for the four velocity model, and the trend of the
solution to the fully discretized version of this model.
In perfect agreement with the behaviour of the discrete model, the
asymptotic state of the fully discrete model we introduced, both in
the case of specular reflection and diffusion at the boundaries, is a
travelling wave.

This fact push us to conjecture that the asymptotic state of the
solution to the model studied by Slemrod is the constant one.

In more detail, in the next section we introduce the Broadwell
model, its fully discretized version and the main results we obtained
in [6]. The third section deals with the four velocity model, its
fully discretized version and the trend towards travelling waves.
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Finally, we propose in the fourth section some concluding remarks
and numerical computations.

2. The Broadwell model.

The Broadwell model is often used, due to its simplicity, in the
study of some specific problems related to the evolution of a rarefied
gas. The gas particles have the same mass and speed, and can move
along three perpendicular coordinate axes. For flows which depend
only on the z space variable, and for which only three densities are
different at the initial time, one considers the simpler form

@ + 6—“ = w? — wv
ot = Or
v Ov
2.1 =
(2.1) T P
‘Ow 1
ot -~ 2 (w* - uv)

where (u = u(z,t),v = v(z,t),w = w(z,t)), z € R, t € RT.
The discretization we proposed in [6] consists of the lattice model
obtained by considering the gas concentrated at the points
2(2N) 2 ’

The iterative scheme corresponding to system (2.1) is the following

L1 ;=21 +6(i=2,...,2N) |

n+l _ . n n\2 n n
uptt =up g+ 6 [(wi ) - ui—lvi+1]

(2.2) o= oy 6 () - ul oy

1

w?“ =w} — 55 {(w?)z - “?—1”?+1]

n>0,and i =1,2,...,2N — 1, with the boundary conditions
upth = o 46 (D)’ - of g

(23) optt = of 48 [(wp)? — ofog ]

n 1 n n
w1+1 = wy — 55 [(w1‘)_2 - U vg]
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for i =1, and
n+l _ .n n \2 n n
Uy = Upy_y + 6 [(sz). - UzN—WzN]

(24) v = uiy + 8 [(win)” — iy yuly]

1 n
wid! = why — 56 (i)’ — uly_ v
for : = 2N. .
Let {u?,v?,w?} ,%7=1,...,2N be nonnegative initial data for the

1)

evolution system (2.2), with boundary conditions (2.3) and (2.4), and
2N |
let p° =56 Z(u? + v + 4w)) be the initial total mass. In [6] we proved

i=1

THEOREM 1. We shall assume that p° < 1. Then, for any spatial
partition (any N) and for all time iterations (n > 1), the system (2.2),
with boundary conditions (2.3) and (2.4)

a) Maps positive data into positive data;
b) preserves the total mass;

¢) thesequences {u?, v, wP},i=1,...,2N converge to the equilibrium
1 o 1 45 1 4
12N? 1en? 1eN? [

asymptotic state given by {

The above theorem assures that the fully discrete model manifests
a trend towards the global equilibrium, that in this case is given
by the state in which all the components are equal. On the other
hand, with the solution we found in theorem 1, we can approach the
solution to the discrete Broadwell model.

(l}iven the sequences {u?,v?,wP} ,i=1,...,2N , let us define, for
= 3w

w(2,t) = uP
v (2, 1) = o

Wz, t)=wd i=1,...,2N

if ¢ € [5 <z - %) 6 <i+ é—)) and ¢ € [né, (n + 1)6). Then [6]
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THEOREM 2. Let T > 0. Then, for any ¢ > 0 we can choose an
N*(T\,¢) such that, by dividing the interval (0,1) into 2N parts, with
N > N*, we have

se(0) {[u’(2,8) = u(z, )] + [u’(2,8) — u(z, )] + |u’(2,8) - u(z,t)} < e

for every t <T.

It is clear that from the previous thorem we can not conclude
that the Broadwell model manifests a trend towards the constant
state (global equilibrium). Numerical computations [6] on the other
hand show, for many classes of initial values, that the time employed
by the fully discrete system to approach the constant state by a fixed
error, is independent on the number 2N.

To understand more deeply the relationships between the discrete
kinetic models and their fully discrete versions, we shall consider
in the next section the plane four velocity model, which has been
recently studied in a bounded domain by Cercignani [3].

3. The plane four velocity model.

The plane four velocity model is one of the simplest discrete ve-
locity models. The evolution equations for the densities corresponding
to the velocities vy = v, = 1 and v3 = v4 = —1 read

af;  0f;

(=1 (fofa = fifs) 1=1,2,3,4

Here we consider the initial-boundary value problem in the strip (0,1)
with specular reflection at the boundaries.

Cercignani [3] proved that the asymptotic state of the solution
is given by travelling waves, and found the explicit form of it. His
reasoning can be easily adapted to the fully discrete version of the
four velocity model, so obtaining the same result on the asymptotic
state. |

First, let us define the model. We consider, as in the previous
section, the gas confined to the strip 0 < z < 1, concentrated on the
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1 1

:—-——:'_:-—-' XLy = Ly 6:2,,2N

The iterative scheme corresponding to system (3.1) is the following
=, +6Qp
Q?H =g — Q7
(3.2)
RPHL = RBP4 6Q7
i — 41 + Qz
BT = kP, —6QF i=23,...,2N -1

where QF = 971k — S hy.
On the boundary, as i = 1

P = kD + 6Q7
gt =k - oQp
(3.3)
YT =BG+ 6Q7
EPH = k2 — 5P
Here, Q7 = h7k} — k’l‘h’z‘. On the other boundary, namely for i = 2N
foNt = fono +6Q%N

G5 = oot — 6Q3y
(3.4)

hgx}l = gQN + 5Q3N
kSt = fon — 6Qy
where Q%y = g3 _ fin — fin_190n-

The symmetries of this model permit to identify straithforwardly
the asymptotic state.
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Let us introduce the following notation
Al =M +97 B} = hl +k}
F =1 Ky =k}

Then, system (3.2), with boundary conditions (3.3) and (3.4) is
rewritten as follows

A?H = A,
B?H = B?+1
(3.5)
FPY = F 4+ 6 [AP KD, — Bl FP L]
i — +i-1 1—1+2741 i+14 =1

A;H-l — A?—l — & [A?_lfi’ﬁ*_l — B?_*_lFﬁ_l]

with the following boundary conditions

n+l __ n ., n+41 __ n
Aptt=pr;  pptl=pr

n+l . An . n+l __ 4n
BzN — 12N> A2N — 12N -1

Fptl = Bl — K3 + 6[BY K} — B} K7]
(3.6)
KI* = K7 - §[BY K} ~ B K7

Fodt=Fpy_ 1 +6 [AQNF;N—l — AN _1FiN]
K;ﬁl = Aoy —Fon =6 [AQNFqu - AgN—1anN]

When the total initial mass is less than one, we can repeat the
analysis of [6] for the Broadwell model, concluding with an analogous
of theorem 1, parts (a) and (b). The situation is now different for the
asymptotic state. It is clear, from the first two relations in (3.5) and
(3.6), that A? and B?,i=1,...,2N and n > 0 are completely known in
term of the initial values, and represent travelling waves. The same
conclusion can be drawn for the asymptotic states of FP' and K?, due
to the linearity of the relations (3.5 ¢,d) and (8.6 ¢,d,e,f). This result
is in perfect agreement with the analogous one proved by Cercignani.



154 E. GABETTA - L. PARESCHI

In addition to the case of specular reflection at the boundaries, with
the fully discrete model we can treat the case of pure diffusion, with
the same conclusion about the trend towards travelling waves. In the
last section we will show numerically that this last case leads to a
regularity in the final form of the state of the system.

4. Final remarks.

We studied in this paper the asymptotic states of some fully
discrete model in a bounded domain, looking for connections with the
asymptotic states of the corresponding discrete velocity models. The
- behaviour of the fully discrete Broadwell model towards a constant
state is presented in figures 1 a,b,c.

0.15
0.15

0124
0.124

0.094
0.004

wiQ
ueg

0.061
0.061

003
0.03q

o T T T W
X

oo-wr—- -

- n=0 —— n=500 —& n=1000 I

0.124

0.08

)

0.064

0.031

0,00 T

X

i—-—nzo ~+ n=500 -%- n=1000 I

Fig. 1 - a, b, ¢,

When the four velocity model is considered, the behaviour both
of the discrete and of the fully discrete model is identical. With
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regards to the this last model, we give here some picture obtained
by numerical .computations that refer both to the case of specular
reflection at the boundaries, and to the case of pure diffusion. This
second case, which is not so obvious to treat for the discrete model
corresponds to system (3.2), where a modification of (3.3) and (3.4)
occurs. The boundary conditions at i = 1 and ¢ = 2N are substituted
by the following
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where P! = [

(4.2)

where PJy = [% fon+ =

0.50

1 1
2
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S+ —k’f] [k3 — h3], and

FaN" = finoy +6Pgy

n+41
9daN

1

= ggN—l - 5P2nN

1
ho¥t = 'éf:?N + -g2N" + 6P}y

n 1
kon' = ‘2‘ng +

1
2

2
1

QQN] [f?N-1 - 93N-1]-
Figures 2 a,b,c,d give the initial densities, whenever figures 3
a,b,c,d present the resulting travelling waves.
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