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- THE UNIQUENESS PROBLEM FOR A MODEL
OF AN INCOMPRESSIBLE FLUID MIXTURE

M. GENTILE - S. RIONERO (Napoli)

Two uniqueness theorems for an isothermal mixture of two miscible
fluids are proved. The mixture F' is incompressible in a generilized
sense and able of exerting Korteweg stresses.

1. Introduction.

Let F be a mixture of two miscible incompressible fluids 4 and
B and let U, ®,p,0, = denote velocity, concentration, temperature and
pressure field, respectively. Recently, Joseph [2] has studied the case
when F can be considered incompressible in a generalized sense.
Such a generalization consists into assuming that the density p
is not influenced by the pressure =, which has still the meaning
of a dynamical variable, but, rather, that p is related through a
constitutive equation to ® and 4. As a consequence, the velocity field
U is not supposed solenoidal. Furthermore, beside the usual stresses,
Joseph considers also those due to density changes according to the
theory of Korteweg of 1901. The evolution equation determined by
Joseph when F' is isothermal, under the hypothesis that p obeys the
linear constitutive equation

p(®) = pa® + pp(1 — ®)
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where p4 and pp are constants, are the following ones

( %(tg + @ divU = div(DV®)
(%) < Po %—? +pdivU =0
dU . . . & (2)
ks =V + 2div(pD[U]) + V(A divU) + divT'¥ + pg
with
T(z) _ 8'5@ 0P . 0%2P

o Ox; '0x; +7'(‘3xi8:cj

5:(51pé+§2+21/pq>

7 =71pP8 +72
where D[U] is the deformation rate tensor, g is the gravity, 4 and
A are the viscosity coefficients, D is the diffusion coefficient, while
81,82,v,v1 and v, are coefficients depending, in general, on p and
¢. Equations (x) are very interesting from both mathematical and
physical point of view and several problems arise .

Here, we are interested into the uniqueness problem of the
solutions to the equations we obtain from the (x) when the fluids of
the mixture have the same, or nearly the same density, but not the
same viscosity.

2. Preliminaries.

When the fluids of the mixture have the same, or nearly the
same density, but not the same viscosity, Galdi, Joseph, Preziosi,
Rionero [1] proved that equations (%), in dimensionless form can be
written:

(1) divU =0

(2) '%%1+U-vq>_—:Azq>

(3) :91_ [%‘2{ LU. VU] = —Vr + 2div(u(®) D[U]) + K1 VP A, — R2®k
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where U,®,r are respectively velocity, concentration and pressure
fields; D[U] is the symmetric part of VU; u = p(®) is the viscosity,
where ® € [0,1] ; k = —g/|g|; S and R are positive constants; K, is a
real constant (Korteweg constant ) arising from Korteweg stresses.

To (1), (2), (3) we add the initial boundary conditions :

(4) U(x,t) = Ug(x,t) B(x,t) = Ds(x,t), VxeS=00, Vi>0

(5) U(x,0) = Up(x)  @¥(x,0) = $y(x), Vx € Q.

where Q is a compact time-independent domain of R3 .

Assuming that (U,®,r) and (U +u,® + ¢, 7 + p) are two solutions
to the equations (1),...,(5) then easily follows that the equations
governing the perturbation u,¢,p are

(6) | divu = 0.
D¢
(7) E+(U+u)-V-¢:—u-V<I>+A2-¢.
Llou  y ﬁ = L YU~ Vp 4 2div (@ + 6D
5|5+ U+ Vu] =L U vy 2divue + DR
(8) + 2div([u(® + ¢) — u(®)] D[U]) + K, VI A ¢

+ K1VeA2® + K1 VA4 — R?¢k
(9) u(x,t) =0 ¢(x,t) =0, Vx €0, Vi>0

(10) u(x,00=0  ¢(x,0)=0, VxeQ

where we assume that the motion U+u, & + ¢ satisfy the same
initial-boundary conditions of the basic flow U, ®.

In order to obtain uniqueness theorems, we shall introduce the
following generilized energy : '

_ 1 T2y 2
(11) 8_—2—/ﬂ<slul + A¢° + 0| V| )dQ,
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with A and ¢ real parameter to be chosen later suitably according to
£ >0 . From (6),...,(9) -since 2 does not depend on time- we have

'flf_,{ 1
d ~ 'S

=A< (u- V)¢ > +2 < div([u(® +¢) — u(®)] D[U]) -u >

<u-VU u>+K; < (u-V$)Ayd > —R: < wé > —

(12) +{(K1+0)<(u -V®)Agp> 40 < (U-Vd)Arh >} —
~ {2 < (@ + )PP > +A < [Vo[* > +0 < |Azg|* >} +

+(Ki+0) < (u- V) Azd >

where < - >= fﬂ~dQ and w=u-k.

3. A uniqueness theorem for negative Korteweg constants.

In the sequel we shall assume that the constitutive equation
p = p(®) is such that .

pe C*([0,1])
{Emo =const >0 : p>p, V®ENI].
Furthermore, we shall denote by Z(2) the class of (U, ®) such that:
(1) U(,1), 8(-,t) € CXQ), ¥t > 0;
(i) U(x,:), ®(x,), Vo(x,-) € C}([0,T}), Vx€Q,VT>0;
(i) VU(x,-), As®(x, ) € C°[0,T]), Yx€Q, VT >0.
The following theorem holds:

- THEOREM 1. If K, <0, then in I(Q) exists at most one solution
(U, ®) to the initial-boundary value problem (1),...,(5) such that U
and ® are bounded with their first and second spatial derivatives.

Proof. First of all, let us choose
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in (11) and (12) . We get then £(¢) > 0, Vt > 0, and

d& 1
-—Ji—:{—§<U-VU~H>+A’1<(U'v¢)Az"I)>fR2<w¢>_

— < (u-V®)¢ > +2 < div([u(® +¢) — u(®)] D[U]) - u > }—
K < (U-V$)Agh > —

= {2<p(®+¢) D] > + < [Vo]* > — K1 < |Azg)? >}

Let us observe that:

< div([u(® +¢) — u(®)]D[U]) -u >=
=< p"(®+€4)¢ VS -D[U] u> + < 4 (® +¢)Vé-D[U] -u> +

| + < (®+n¢)¢ (AU -u) >

with 4/ and p” first and second derivatives of u with respect to & ;
and where ¢,7 are functions whose values are in (0,1) .

Therefore by Schwarz ineqﬁality :

d&

= ShE =K1 <(U-V$) Ard > +Ki1 < |Aggf* >

where h is a positive constant. Since
2

M e 1
<(U:V9)Az >< = < [V[* > +5 < |Asg” >,

with M =sup sup|U|, then it follows
>0 Q

where 4 is a suitable positive constant.

From the last inequality, since £(0)=0, follows that £(t)=0, vt>0,
and the uniqueness theorem is proved.
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4. A uniqueness theorem for positive Korteweg constants.

Assume K; > 0. Moreover, let us suppose 3Iu*, M positive
constants such that |

p* > sup {u(®), [W (D), [£"(®)]}
0<®<1 :

M 2 sup sup {|U], [VU], |4, U], [V, |A2®[} .
t-.

From (12), choosing A >0 and o > 0, by virtue of Young inequality,
we get

(13) %57£—D+N,

where

(14) D =D(u,é)=po < [Vul> > +X < |V4[? > +% <Az >,
(15) N =N, ¢) = (K +0) < (u-Vo)Azé >,

1
Yy=v(0, A)=2M+ M [2p" + K1 + M (K1 +20)] <S+;> +
el 2
(16) +M2K,\S -I%'——fqt

+ [2p*M (M + 1)+ R*+ M ) (S+%),

where v >0 and D > 0. Furthermore, from Poincaré inequality we
have:

(17) E<hD,
with h =a max {_2721—8_ , 1} , o being the constant of Poincaré inequal-
0
ity in Q.
Setting
Yo = h_1(> 0) ,

the following theorem holds:
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THEOREM 2. If Ky > 0 and

Y < 7o,

then in I(Q) exists at most one solution (U, ®) to the initial-boundary
value problem (1),...,(5) such that U and ® are bounded with their
first and second spatial derivatives. :

Proof. From (15), accounting for
<t ><4 (<P >)? (< [VyP>)*,

with ¢ vector or scalar field (see [3]), by Schwarz inequality easily
follows that

de=const >0 : N <eD3 .
From (13), (17) and the latter inequality, then it follows

(18) fldég [cvé—a—yh)} D.
Now, since
Y <%0,
it can be shown - by (18)- that
-Czig <0, Vt>0.

Let us observe that at any fixed t
E(t)=0 = D(t) = 0.
Since £(0) =0, we get
¢D3(0) = (1 —vh)=-(1-vh) <0.
Let
t* :sup{tZO: cD3(t) < 1—7h} .

By continuity t* > 0. We shall prove that * = +oo.
In fact, assume ¢* < +o00. In such hypothesis

d€ )
=<0, Vie0t7).
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Hence
E@)<E(0)=0, Vtelo,t7),
and then £=0 in [0,#*). Because of this

D)=0, Vteotr),
and then by continuity |

cDE(t*) — (1’—7h) <0.
So, there exists r>t*: |

D) - (1—7h) <0,

which is a contradiction. Then t* = +oo. Therefore £(t) < £(0) =0,

Vi > 0, and then
£E=0.

From this, easily, follows the uniqueness of U and &.

Remark. Since y = y(0, )), concerning the choice of parameters
A and o, it is useful - in order to allow u*, M, K;, S, R to be the

largest possible - to choose A and o such that
(e, A) = min 7(" )

This happens when we choose:

e \/2,u*+]{1 (1+ M+ MK;S)
- 2MS

N \/2;4*M(M+1=)+R2
= SYE .
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