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NONALIGNED SHOCKS FOR DISCRETE VELOCITY
MODELS OF THE BOLTZMANN EQUATION

J. M. GREENBERG (Baltimore)*

1. Introduction.

At the conclusion of I. Bonzani’s presentation on the existence
of structured shock solutions to the six-velocity, planar, discrete
Boltzmann equation (with binary and triple collisions), Greenberg
asked whether such solutions were possible in directions e(e) =
(cos a,sin ) when o was not one of the particle flow directions, namely

(Z_I)W,z’ = 1,...,6. This question generated a spirited

when o #
discussion but the question was still open at the conclusion of the
conference.

In this note the author will provide a partial resolution to
the question raised above. Using formal perturbation arguments
he will produce approximate solutions to the equations considered
by Bonzani which represent traveling waves propagating in any
direction e(a) = (cosa,sin). These approximate solutions involve a
small positive parameter ¢ which represents the strength of the shock
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 wave and are of the form
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The wave speed c is related to 0.< ¢ < 1 by e = (1 —¢)t/2/242,
€ = e(xcosa + ysina — ct) is ‘the slowly varylng traveling wave
variable, and af satisfies -

daf 15, ' _ N
(12) aﬂ =3. 21/2161"—00(18(4 + agz), Im 08(51') p— 0,
: 51 ' §1——00 A

and flim ad(éy) = —4.

The parameter n_., > 0 characterizes the uniform upstream particle
densities and k; is the constant coefficient in front of the binary
collision terms in the governing system; for details see equation
(2.12). This result implies to leading order in ¢ > 0 the amplitude of
the shock is unaffected by the triple collision term.

In the special case when o = 7/6 one does not have to rely on
a formal expansion. Symmetries reduce the number of unknowns
from six to three, the triple collision term drops out of the governing
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equations, and the exact solution is of the form
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where 0 < ¢, ¢ and ¢; are as before, and now «) satisfies

dad  3:2Y%%kn_o 2\ 0
: = 4 1 2¢4)ax
dé, (1—@)1f2(1+2@)a0( + (1+ 3¢+ 2¢%)ag)

and

4
. 0 N — . . 0 N —
611-311 ay(é1) =0 and €1hm ag(ér) = [ETTYE

All that is required of ¢ > 0 is that it is such that n; > 0,7=1,...,6.(})

2. Problem Formulation and Perturbation Results.

As stated in the introduction our interest is in nonaligned
traveling wave solutions to the six-velocity, planar, discrete Boltzmann
equation with binary and triple collisions. The basic unknowns are
the particle densities n;,i = 1,...,6. Specifically, n;(z,y,t) represents

(}) The invariance of the governing equations to rotations by /3 implies
that similar results hold for « = 7/6 +i7/3,i=1,...,4.
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the number of particles per unit area at (z,y) at time ¢ traveling
with velocity v; = cos((i — 1)7/3)e; +sin((i — 1)7/3)es,i = 1,...,6.(%*) The
evolution equations for the particle densities are

(2.1) (% +v; -v) ni = k1Q; + ko(=1)'T, i=1,...,8,
where

(2.2) V= eyé% + ez%,

(2.3) Q1 = Q4 = (n2ns + nzng — 2niny),

(2.4) Q2 = Qs = (nane + nyng — 2n2ng),

(2.5) Qs = Q4 = (n1ny + nans — 2n3ng),

(2.6) T = (nanang — nyngns),

and k; and k; are fixed positive constants with dim(k;) =

Area ) Area 21

(number of particles)(time) and dim(kz) = (_number of particles) time
For any « € [0,27) we let

(2.7) ei(a) = cosae; + sin we, and es(@) = —sin ae; + cos ey
be the orthonormal basis obtained by rotating the fixed basis, e; and

e,, through an angle «. Noting that relative to this new basis the
gradient admits the representation

. 05, 0
(2.8) V= el(a)% + eg(a-)vé—i
where ¢ and ¢ are related to £ and y by

(2.9) ¢ =zcosa+ysina and ¥ = —zsina + ycosa,

(?) Throughout e; = (1,0) and e, = (0, 1) will be a fixed orthonormal basis.
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we find our basic equation (2.1) takes the form
(2.10) 9 + (cosacos ((z - 1‘)7—(—) + sin arsin ((z - I)I)) 9
Ot 3 3// 8¢

4 (cosasin ((z - 1)%) — sin « cos ((z - 1)%)) 6—%) n;
C =k Qi+ k(-1D)TIT i =1, 6.
Our interest is in the solutions to (2.10) which are functions of
(2.11) £=¢—ct.

Previous efforts on this problem have been limited to the case
where o = 0, that is to waves propagating in the particle direction (1, 0).
Gatignol [1] gave an elegant analysis of traveling waves propagating
in the direction (1,0) for the six velocity gas under consideration here
when only binary collisions were accounted for. Her system supports
an additional conservation law not satisfied by our system and thus
her results are not directly comparable to the ones presented here,
even for waves propagating in the direction (1,0). References [2]-[5]
contain other efforts on shock wave propagation for waves moving in
one of the particle directions. The solutions of interest to us must
satisfy

(cosacds ((z ~ 1)%) —f—sin o sin ((z - 1)%) - c) CZ;' =

= k1Qi + ka(—1)7T, i=1,...,6

(2.12)

and at ¢ = too the right hand side of (2.12) must vanish.

Following Bellomo and Longo [2] we shall restrict our attention
to solutions which converge to a uniform state, n_.,, in the upstream
direction; that is ones which satisfy '

(2.13) lim ni(é)=n-c>01¢=1,...,6.
.

An analysis similar to that found in [2] indicates that if a nontrivial
solution to (2.12) and (2.13) exists, then the downstream state must
be of the form

(2.14) Glim n;(€) = n{° = aoo €xp(boo cos((i — N)7/3 — @), 1=1,...,86,
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where b, < 0,

(2 15) n"oo _— (2U:booboo + U + ((2beooboo B Ul)z + 8(U;'boo!)2;)1/2i)
' oo 12 ’
. 2(((2U;booboo - Ul)z + 8(Uy'bool)2‘)l-/2 + (QU,booboo - U)) ,

and

(2.17) U( oo,oz) Zexp(b cos((i — 1)w/3 — o).

The equations (2.15)-(2.17) are merely the Rankine-Hugoniot
relations for the system (2.12). If one defines the moments

6
Py = (cos((i— 1)m/3 — a))™n;(€), m=0,1,and 2,
i=1 »

then a simple calculation shows that any solution of (2.12a) and
(2.13) must satisfy

Pi(€) = c¢(Po(€) — 6n_oy) and Po(€) — 3n_o = cPi(8).

These relations are respectively the mass and momentum balance for
the system. The relations (2.15) and (2.16) are obtained from these
balance laws by substituting the downstream Maxwellian, (2.14), into
the defining relations for the P,,’s. The results of this substitution are

U o02U
P5® = aeoU(boo, ), P° = aooab (bo, @), and P5° = aLooab2 (beo, @)

and the resulting relations
P = ¢(Pg° —6n_o) and Ps5° —3n_o, = cP>®

are the Rankine-Hugoniot or shock relations for the system (2.12). The

. . . P _ PP -3n_g
identity (2.1_5) follows from the equation P —bn) — =
and (2.16) follows from ¢ = 22— 5% 414 (2.15),

Pge — 6n_q
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The identities

U 92U
(2.18) U(0,«) =6, oo —(0,) = 0, and FIEN —(0,0) = 3
imply that
def
(2.19) Flboo,x) = 662 (boo,a) U(boo, x)
satisfies
|6 2
F0,a) = (0 @)=0 a nd W (0 ) = 3/2

and thus that for -1 < b, <0
9 . , oU
(2.21) ¢? <1/2, 0<6n_o —aclU(beo,), and ‘8b—<b°°’a) < 0.

The second inequality in (2.21) is equivalent to the assertion that the
upstream density exceeds the downstream density while the third
inequality in (2.21) implies that the momentum and flow velocity in
the direction e;(«) is negative at the downstream equilibrium state.
Motivated by these necessary conditions which must be satisfied
by a nontrivial solution we look for a solution to (2.12) of the form

'//1\' )

(2.22) n=ng + eN(¢y)

| ]1
\1/ /

where n_c, >0 and 0 < ¢ & (1 —2¢?) € 1 are the basic parameters
describing the system. With this choice, the downstream state of the
system will be determined in terms of these parameters. The variable

¢ is defined by

(2.23) 1 =€ = e(zcosa+ ysina — ct).
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Anticipating our final results we introduce the vectors ¢, ¢y, ¢2, 3,
s; and s, which form an orthogonal basis for our state space IR°:

(1) (1) (1) (1)
1 | 172 ~1/2 -1
(2.24) 1 | —1/2 —~1/2 1
. Cog = yC1 = yCo = | , = ,
0 1 1 —1 2 1 C3 1
|1 | -1/2 ~1/2 | 1
i)\ e/ \a2) \-1)
0 0
31/2/2 31/2/2
1/2 _al/2
(2.25) $1 = 3 0/2 and s; = 30 /2 ,
_31/2/2 ' 31/2/2
—31/2/9 ~31/2/2
let
(2.26) ¢ € diag(e)), S % diag(sy),
and
-2 1 1 -2 1 17
1 =2 1 1 -2 1
1 1 =2 1 1 -2
M=kno| o 1 1 9 1 1|7
1 -2 1 1 =2 1
L1 1 -2 1 1 =21
(2.27)

2
thnZo | 0y 4 4 1 1|

and note that the following identities obtain:

(2.28) Cico = c1,

(229) Cicy = (Co + Cz‘)/z,
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(2.30) Cis1 = s2/2,

(2.31) Cica = (e, + ¢3)/2,

(2.32) Cisz = 81/2,

(2.33) Cic3 = c2,

(2.34) Sico = sy,

(2.35) S1c1 = 82/2,

(2.36) S1s1 = (co ~ €2)/2,
- (2.37) Sicy = —81/2,

(2-38)-  Sisy = (c1 —¢3)/2,

(2.39) Sics = —8g,

(2.40) Mco = Mey = Ms; =0

(2.41) Mcy = —6kin_gco

(2.42) Mso = —6k1n_ o082

(2.43) Mcs = 6kan?  cs.

It is a relatively simple matter to verify that if n(¢) satisfies
(2.12a), then N(¢1) must satisfy
2
= ‘ _1/9Y/2 ¢
MN = ¢(cosaCy +sinaSy — 1/2/2)N ¢, + AT (1= @)1/2.)N’51

(244) - kln_ooG((NzN5 + N3Ng — 2N1N4)Cg+

+ 31/2(N3N6 — Ny Ns)sz) — kan? o (€Ts + €2Ts)cs,
where
T cl__e;f (N2N4 + NoNg + NyNg — Ny N3 — Ny N5 — N3N5')a

and ,
T3 & (N, NyNs — Ny N3Ny).
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We seek an asymptotic solution of (2.44) of the form

(2.47) N ~ NO 4+ NP4 N? + ...

and shall content ourselves with the first term NO. Insertion of the
series (2.47) into (2.44) yields

MN° =0,
(2.48) MN! = (cos aC; + sin aSy — 1/21/2=)NfJ .
(2.49) —_ kln__oo((NgNg-{—NgNg "'QN]?NE)CZ.*—
+ 31/2(NINQ — NINQ)sy) — kon?  Toca,
and
MN? = (cos aCy + sin a8y — 1/21/2)N,1£1 + (1/23/2)N? 1
(2.50)

+ (vectors in the span of c2,s; and c3).
Equations (2.40) and (2.48) imply that
(2.51) N® = alco + ale; + b9y

while (2.28)-(2.43), (2.49) and (2.51) imply that

cosa | sina 0 _
(2.52) Si7z 96 T 57z bne %06 =0
1
(2.53) —ma?’gl + cos aag,s1 =0,

1 .
(2.54) ~5i7ble Hsinaage, =0,
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and

(2.55)
N*' = aleo + aley + bls;

2
+1/6 [ NINO + NINQ — 2NOND — éi/‘;o—lil&ag,&) e
17 —o00

sin 2«
+1/6 <31/2(N:?N§ - N3 Ng) - W“S,&) 2
\ e

1 ,
+ W(N§N§ + N3 Ng + NJNg — NYNJ — NP N — NJNQ)es.

The relations (2.52)-(2.54) follow from the fact that in order for (2.49)
to have a solution, the projection of the right hand side of (2.49) onto
co, ¢1 and s; must vanish. These equations, together with

(2.56) lim_(ad,a.89) = (0,0,0),
imply that
(2.57) af = 24/% cos @ad and b9 = 2'/%sin aa)

and thus that

N° = a%(co + 21/2((:08 acy +sinasy)) =

(1) (= )

1 | cos(7/3 - a)
1 cos(27/3 — «

(2.58) a0 . (27/3 — o)
1 | cos(m —«)

11 | cos(47/3 — a)
\\1/ \cos(57r/3—a)/)
The identity (2.55) is a simple consequence of (2.58) and the formula’s

(2.28)(2.43) which give the action of the operators C;, S; and M on
the basis vectors ¢y, ¢y, s1, cs, s2 and cs.

To obtain the governing equation for ol we substitute (2.55) and
(2.58) into the right hand side of (2.50) and note that in order for
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(2.50) to have a solution the projection of the right hand side of (2.50)
onto c¢o, ¢; and s; must vanish. The vanishing of these projections
implies that

cose ; sina,; af

1 -
(2.59) a4~ St~ HiptiT g =0
1 cos & CO8 ¢
1 1 0 0 ar0
cosaag-——Q—-l—/Ea1+ 2 ag + 19 (N2N5+
cos 2«
(2.60) + N3NG — 2NP NG = =)
sine [ 1/9 0 Ar0 sin' 2o 0 —_
+ = D (3 / (NaNe Ny Ng) — m%,&) = Q’
and |
., b sina , sina
sin aag + 51/2 Tao - (Nz Ns
000 0 xr0 cos2a
(26}) + N3 N6 - 2N1 N4 — mao,fll)

sin 2« o0

CcO8 «v

12 (31/2(N3N6 N20N50') -

| If we now multiply (2.60) by cos @, (2.61) by sin «, add the results,
and utilize the identity (2.59) we obtain the following equation for a:

1 - da cosQa
( ) 12-21/2k1n d&'f :Clg (N2N5 +N3N6—2N1N4)+
2.62 —00
' sin 2«
+ 4.31/2(N3?Ng — N3 Ng).

If we then exploit (2.58), we find that

(2.62 NINQ + NINS — 2NPNJ = 3 cos 2a(ad)?
and
(2.64) NINQ — NIN? = 31/%in 2a(af)?

and (2.63) and (2.64), when comblned with (2.62), imply that ao
satisfies
dag _

Col/21. 0 0

(2.65)
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Equation (2.65)v suffices for the determination of a3 and thus for the 0th
order term N in the expansion (2.47). The same methodolcgy leading
to NO could, in principle, be used to obtain additional coefficients
in the expansion. We shall not perform these calculations since the
algebra involved is horrendous. Instead we shall focus our attention
on the special case when o = 7/6 where one can obtain exact results.
These results appear to be new and confirm the validity of our formal
expansion in the ¢ = 01 limit for the specific plane wave associated
with the direction o = 7/86.

3. The Case o = /6.

We conclude by analyzing the case where o = /6. The form of
the downstream Maxwellian (see (2.14) with o = 7/6) suggests looking
for a solution of the form

| 1
3.1) (€) N§0 +N%1 +N‘O
3. mE =M 10 '

|10 '0 |l 1
\0/ \1/ \0/

This form is compatible with (2.12) and (2.13) provided

(Y (% [0
| 0 0

(3.2) NE| N,

satisfies

1
312 .
(33) (leag(l,O, —1‘) - C) N)E = kl(N22 —_ N1N3‘) I —2
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and
1
(3.4) Jim N =n_o | 1
1/
If we introduce the orthogonal basis
1 1 ‘ 1
(3.5) a,=| 1], a;= 0], and a, = | -2 |,
1/ -1/ 1/
rewrite N as
(36) N= n_oo(Aan + A1a1 + Agaz‘),

and observe that
_ Qa0 +ay)

(37) dlag(l,O, —1)&0 = aj, d1ag(1,0,—1)a1 = 3

and diag(1,0,~1)a,; = a;,

we find that 4q, 4; and A, must satisfy

A = 31/2, d4o

(3'8) _gé'_ d€ )
dA; _ 2 dA; dAy _ ., . dAo
(3:9) & ~3rd @ e g
oo dA
(3.10) ""2 (1+2(1—202))—dz£:kl(Ng—Nle),
and
(311) ¢ lim (A(),Al,Az-) = (1,0,0)

Equations (3.8), (3.9) and (3.11) imply that

(3.12) A1 = 3Y2%¢(Ao — 1) and A; = (2¢% — 1)(Ao — 1)
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and these, when combined with (3.6), yield

(3.13) Ni=n_wo[l+ (14 (2¢2 = 1)+ 32¢) (4o - 1)),
(3.14) Ny = o[l + (1 4+ 2(1 = 2¢%)( 4o — 1)],
(3.15) N3 =n_e[l+ (14 (2% — 1) — 31/2¢) (A — 1)],

and
| N2 — NiN3 = n_oo(6(1 — 2¢%)(Ag — 1) + 3(c2+

(3.16)
+ (1= 26 (2 + (1 - 26%)) (Ao - 1))

If we now make the substitution
(3.17) 0<e=(1-2c%), Ag—1=cal, and ¢ = ¢,
we find that a3 satisfies

da8 3 22k in_c

- 24+ (1 2,0
dc ,(1—6)1/2(1+25)‘10( + (1 + 3¢+ 2¢%)ag)

(3.18)
and (3.1) be easily integrated to obtain solutions satisfying

: 0 —_— : 0 _ —4
(3.19) flh—lpoo 40(é:) =0 and s}l—inoo a(6) = 5 + 3¢ + 2¢2°
That (1.3) is valid is a immediate consequence of (3.1), (3.13)-(3.15),
and (3.17). '
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