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GLOBAL EXISTENCE AND [!-STABILITY
FOR THE DIFFUSION OF THE PARTICLES
OF A MIXTURE VIA THE SCATTERING KERNEL
FORMULATION OF THE NONLINEAR
BOLTZMANN EQUATION

GABRIELE GUERRIERO (Napoli)

The global existence and L!-asymptotic stability of the solutions
to a nonlinear evolution problem, in the diffusion of the particles of a
' mixture, is proved.

1. Introduction.

. We consider a mixture of two different kinds of particles, called
test particles (¢.p;) and field particles (f.p:). The t.p., having mass
m, are injected at time ¢ = 0 by a spatially uniform pulsed source
Q* = QS(v)d(t) (the velocity distribution S(v) being nonnegative and
normalized to unity) in the interior of an unbounded host medium
which consist of the f.p. having mass M and whose total density N
is a constant fixed once for all. The ¢.p. then diffuse in the given
host medium by binary collisions either against the f.p. and between
themselves. The theory takes into account non only scattering but
also removal events in such a way that both scattering and removal
collisions frequencies are supposed to be constants. All the mixture .
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can be subject to the action of a general time dependent conservative
force F(t).

In the frame of the so-called scattering kernel formulation,
the nonlinear integro-differential Boltzmann equation, governing the
distribution function f(v,t) of the t.p. for the physical situation
illustrated, read as [1, 5, 14]:

(0t + (F(t)/m) - Vo) f(v,1) = =[NC + Cn(®)]f (v, t)+

(1) + Nés»éaﬁs(v,’v)f(vl,t)dv/-f-

+C'3/ / ms (v, v v) F(V, 8) f (v, t)dv' dv”
IR, IR,

and is to be integrated upon the initial condition
(2) f(v,0)=QS(v).

In equation (1)
3) wt)= [ 50
IR,

is the unknown total density of the ¢.p. considered, and
(4) ’ C=C+C,, C=C,+C,

are the total microscopic frequencies, scattering plus removal, in the
1/v approximation for the relevant cross section, of the ¢.p. — f.p. and
t.p. — t.p. collisions respectively, all being real nonnegative constants.
Finally we recall that the scattering probability distributions =, and
7, are non-negative functions obeying the normalization conditions

(5) / 7y (v, v)dv = 1, / ms(v', 0", v)dv =1
IR, IR,

and 7, is symmetric with respect to the velocities ' and v" before
the collisions, that is

(6) Ts (’l),, U”, ’U) = s (’l)”, 'l)/, U).
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Equation (1) is different, formally, from the homogeneous usual
Boltzmann equation but is equivalent to such a formulation by a
suitable specification of #,, m,, in the case of Maxwellian particles
with a cut-off [6, 12, 13].

The physical situation considered above has been recently
investigated from the mathematical and physical point of view. We
recall that -in the case of no removal- and when the ¢.p. - f.p. scattering
are neglected- the global existence and uniqueness of solutions to
equation (1) has been given in the natural space L!(IR®) x [0, oo] [2, 3,
9], while in [7, 10, 11] has been studied the problem of stability. In
the general case -in which, beside C,, also the other three parameters
C,,C,,C, are different from zero- in [1] a local theory of existence and
uniqueness for the solution of equation (1) is developed, under some
hypothesis on the parameters of the problem which are restrictive
and a-priori artificial from the physical point view. In the present
paper, by using a weighted norm [9], we prove global existence
and uniqueness for the solutions to equation (1) (Sect.2), and its
asymptotic stability (Sect.3).

2. Existence and uniqueness of the solution to equation (1).

Let us integrate equation (1) along the general trajectoty of a
t.p. between the initial and the reference time ¢. Setting

(7) K(t,v)=H(t)/H(r)

(8) H(t) = exp(=NCt)[NC, + QC, — QC, exp(~NC,t)]=¢/C",

indicated by A the nonlinear inhomogeneous operator defined by
Af(v,t) = Q/(NC)S[v(0)] exp(~NCH)[NC,

+ QC,(1 — exp(=NC,1)]~¢/Cr 4

(9) + [ arey ae) { Ve[ w6 om0 e
0 IR,

. + Cs/ / T, ['U,, ’U”, v(‘r)]f(v’, T)f('l)”, r)dv'dv"
IR: IR,
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we can then recast eq.(1) in the operational form
(10) Af(v,t) = f(v,1).

Let T be any positive constant and denote by EF the Banach
functional space of the functions ¢(v,t), defined on IR; x [0,7] which
are continuous in t for almost every v € IR;, and summable in v for

any t € [0, T]:
(1) E={p(v,t) : Rs x [0,T] = R; p(v,") € L1(Rs), (-, 1) € C[0, T]}

Let denote moreover by

(12) leto,ll = [ o0l
IR,

the I;-norm with respect to v. For the norm in E we shall take

(13) | [lke(v, OlI} = max le(v, )l

In the sequel we equip the space E with the weighted norm
(14) (v, Oll|w = max llle (v, )l exp(=At)||], A > 0
which is equivalent to the norm (13) because
(15) exp(=3D)| e, | < e, < flieCw, O]
Furthermore, we indicate by B, the closed set of E
(16) B, = {p(v,t) € B+ | 0, 0)l] <7 llp(o,Ollfw < 7.

Indicated by

t
(17) v= sup |QK(t,0)+ (NCyr+ C',rzl)/ K(t, u)du]
0

t€[0,00)

the following theorem holds

THEOREM 1. For any positive finite T in the space E equipped
with the norm (19) with:

(18) y<r
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one has AB, C B, and moreover the operator A is a contractive
mapping on B,. Hence we obtain global existence and uniqueness for
a solution to equation (1).

Proof. We now verify that A maps B into itself, namely AB, C B,.
Take the modulus of equation (9) and integrate over v € IR; for the
normalization of S, 7,, , we get

11 t
(19) H'ASOIItSQK(t,OHN@/ K(t,U)II@IIudquCs/ K (t, w)llplldu
0 0

and then, by a further majorization
4
00)  ell < @K (1,0 + (VG Il + Cullllf) | Kt wydu
0

Hence we obtain
(21) ll4¢ll|lw < |ll4¢lll < v for ¢ € Br.
Taking into account (18), we easily obtain:
(22) ~ |ll4ell], <7 for ¢ € Br.

We prove now that the operator A is a contraction on Br.
Accounting for the symmetry of », with respect to the velocities before
the collisions, for ¢, ¥ € Br, we have successively

t
|[Ap — Ay| < NC’S/ duK(t,u)/ 75 [v', v(u)]|e(v, u) — ¥(v', w)dv'+
0 IR,

23 t
) +Cs/ du}'g’(t,u)/ / 7"5[”,>UH,U(U)”<P(UI,U)'+¢(vl,u)|><
0 IR, IR,
190(’0”, u) _ 1/)(,0//, u)ldv’dv"

(

where the symmetry of =, has been used,
| Ap — Avl|s exp(—Ab) <

(24) < INC’, exp(—/\t)[ duK (t,u) exp(/\u)lﬂgo - ¢]]|w+

t
+ 2C,rexp(—/\t\)/ exp(Au)K(t, u)“lgo - 1,b||]wdu.
0
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Hence we obtain
(25) 1Ap — A¢llw < (2C,r + NCy)/(CN + M)]lle - ¥ll|,,-

Choosing
(26) X > [2C,r + N(C, — C)]

the theorem is completely acquired by the Caccioppoli-Banach point
fix theorem.

We observe that when the scattering of the t.p. against the
f.p. is ignored (C, = 0) the existence and uniqueness of the solution
to equation (1) follows without any condition. In fact, in this case,
following [4], equation (1) can be transformed by introducing a new
dependent variable g defined by

(27) f(v,t) = n(t)g(v,1).

Then, we obtain the following evolution equation for g

Q_g(v—’t)_ n v, 1) = n a.(v' v v "
g(v”,t)d’vldv"; g(v,0) = S(v).

Then introducing the new independent variable

(29) 7= / n(r)dt = g:-zn{[(Né, +CrQ) — C.Qexp(—NC,t)]/(NC,)}

0

equation (28) can be rewritten as

ag(v’r) — 1,7 / "
(30) Y g(v,t) = |R3'{qam(v O v)g(v, )g(v" T)
g(v,0) = S(v)

In 3, 9] the global existence and uniqueness of solutions to
equation (30) has been given in the natural space L;(IR3) x [0,c0).
Consequently substituting equation (27) in (30) we obtain the existence
and uniqueness of the solution to equation (1) for €, = 0. We note
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finally that in the case of no removal and when the ¢.p.— f.p. scattering
are neglected the results of [3-9] are reproduced.

3. Stability in the L'-norm.

Let flv, t) and g(v, t)=f+u be two solutions to equation (1)
corresponding respectively to the initial data (2) and '

(31) 9(v,0) = Q[S(v) + S1(v)]; / Si(v)dv =0
IR,

Indicated by
(32) ‘ HU(v,t‘)H=/ u(v,1)|dv
IR,

the L!'-norm of the perturbation u(v,t) to the basic solution the
following theorem holds.

THEOREM 2. If C. > 0 the solutions to equation (1) are
asymptotically exponentially stable in the L'-norm.

Proof. The perturbation ”u(v,t)” to the "basic” solution f(v,?)
shall obey to the nonlinear integral equation

+

u(v,t) = QS1(v)exp [—C'Nt - C’/ n(u)du

+ .{t exp [—-éN(t —u) — C{tn(g)df

X
(33)
X [C,/ / dv'dv" m, (v, 0", 0)(F (v, u) + g(v', Wu(v”, u)+
IR, IR,
+ Nés/ dv'm, [v',v(u)]u(v’,u)] du.

IR,

In force of the normalization of #, and 7, and of the symmetry
condition (6), taking the modulus of equation (33) and integrating
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over v € IR3, we obtain
| A t
[lu(v, )]s < Q|IS1]] exp [~0Nt ~ C/ n(&)dﬁJ +
i 0
(34 + [ 0Cuntu) + N,
0

exp {-—C’N(t —u) — C’/ n(é)dﬁ] du

then, setting

(35) [|[¥]): = exp [C'Nt + C'/ n(é)d{] [l
it follows
(36) 1|l < QIIS:] + [/ (2Csn(u) + NC's*)ll‘I’lludu} :

Taking into account the Gronwall-lemma we obtain
‘ t
(31 1]l < Q1] exp [ [ 26w + Na)du}
0
which implies

lulle < QIIS1[|exp(~C, Nt
(38)
x [(NCy + C. Q) — C,Qexp(=NCyt))/(N C,)|(Co=CICr

Then setting

(39) A =max[(NC, + C,Q)/(NC;)(€=CnICr 4]
it follows
(10) lulle < AQIIS: || exp(~C. Nt)

and the theorem is proved.



GLOBAL EXISTENCE AND L'-STABILITY FOR THE DIFFUSION,.. 193
Remark. If C, = 0 from (1) we obtain
(41) n(t) = Qexp(-NC,t).
Then, accounting for (37), it follows
(42) Wl < QIIS1llexp[2C, Q1 — exp(=NC,1)) /N C, ] exp(N Cyt)
and therefore
(43) [lulle < QlIS1l|exp(2C5Q/NC;) exp(—NCrt)

which proves theorem 2 for C, = 0.
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