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DYNAMICS OF EVOLVING PHASE BOUNDARIES IN
DEFORMABLE CONTINUA

MORTON E. GURTIN (Pittsburgh)

Introduction.

Recent studies of Gurtin [8, 9, 10], Angenent and Gurtin [4],
and Gurtin and Struthers [15] form an investigation whose goal is a
nonequilibrium thermomechanics of two-phase continua in which the
interface is sharp and endowed with energy, entropy and superficial
force. In all of these studies except the last the crystal is rigid,
an assumption that forms the basis for a large class of problems
discussed by material scientists, but there are situations in which
deformation is the paramount concern, examples being shock-induced
transformations and mechanical twinning. Here I discuss the results
of Gurtin and Struthers,') who consider deformable crystal-crystal
systems with coherent interface.

(!) This study was motivated by papers of Cahn [5], Mullins [18,19], Cahn
and Larche [6], Alexander and Johnson [3,16], and Leo and Sekerka [17], all
of whom consider deformable media and derive equilibrium balance laws for
the interface as Euler-Lagrange equations for a global Gibbs function to be
stationary.
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Force Systems. Energy. Invariance.

One of the chief differences between theories involving phase
transitions and the more classical theories of continuum mechanics is
the presence of accretion, the creation and deletion of material points
as the phase interface moves relative to the underlying material, and
the interplay between accretion and deformation leads to conceptual
difficulties. Three force systems are needed:(*) deformational forces
that act in response to the motion of material points; accretive forces
that act within the crystal lattice to drive the crystallization process;
attachment forces associated with the attachment and release of
atoms as they are exchanged between phases.

Because of the nonclassical nature of these force systems, it is
not at all clear whether there should be additional balance laws, let
alone what they should be and how they should relate to the classical
momentum balance laws. For that reason most considerations of this
nature are based on invariance. A new idea, that of lattice observers,
is introduced: these observers study the crystal lattice and measure
the velocity of the accreting crystal surface; they act in addition to
the standard spatial observers, who measure the gross velocities of
the continuum.

The work [15] is devoted entirely to the physics of the phase
interface,(®) and for that reason infinitesimally thin control volumes
are used; such control volumes contain a portion of the interface plus
the immediately adjacent bulk material. A basic ingredient of the
theory is the mechanical production (the outflow of kinetic energy
minus the expended power) associated with a control volume. The first
law of thermodynamics requires that this production be balanced by
the addition of heat and by changes in the internal energy; since heat
and energy are invariant quantities, it seems reasonable to presume

(®) That more than one force system is needed is clear from a discussion of
Cahn [5], who writes: “solid surfaces can have their physical area changed in
two ways, either by creating or destroying surface without changing surface
structure and properties per unit area, or by an elastic strain ...... along the
surface keeping the number of surface lattice sites constant while changing
the form, physical area and properties” (cf. Gibbs [7] pp. 314 — 331).

(3) The basic equations satisfied by the bulk material are the standard equa-
tions of a one-phase material and can be found, e.g., in [11].
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that the mechanical production itself be invariant. This invariance is
used to derive several important results: invariance under changes
in the kinetic description of the interface reduces the tangential part
of the total accretive stress to a surface tension; invariance under
changes in spatial and lattice observer yields the mechanical balance
laws of the theory. This latter use of invariance is highly nontrivial;
it not only leads to the expected mementum balance laws for the
surface, it leads to additional force and moment balance laws for the
accretive system.

The conceptual difficulties of the theory concern forces and the
manner in which they relate to the underlying kinematics. For that
reason a purely mechanical theory is developed. The underlying
thermodynamical law is a dissipation inequality for control volumes:
the energy increase plus the energy outflow cannot be greater than
the power expended, the relevant energies being the energy of the
interface and the bulk energy of the two phases. Again invariance
provides an important result: surface tension equals interfacial energy.

Constitutive theory.

As constitutive equations the surface energy, the accretive and
deformational surface stresses, and the normal attachment force are
allowed to depend on the bulk deformation gradient F, the unit
normal n to the interface, the normal speed v of the interface, and
a list z of subsidiary variables of lesser importance. It follows, as a
consequence of the dissipation inequality, that: the surface energy and
the accretive and deformational surface stresses are independent of v
and z, and depend on F at most through the tangential deformation
gradient F; in fact, the energy '

(1) ¥ = %(F,n)

completely determines the surface stresses through relations, the two
most important of which are:

g S=0piER), = -Dub(Em),

in which S is the deformational (Piola-Kirchhoff) surface stress, c is
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the normal accretive stress, O is the partial derivative with respect
to F, and D, is the derivative with respect to n following the interface.
A further consequence of the dissipation inequality is an explicit
expression for the normal attachment force 7:

(3) T=k+%+b, b=bF,n,v,z)>0,

where ¥ is the difference in bulk energies, while k is related to
changes in momentum and kinetic energy across the interface. These
results imply that the sole source of dissipation is the exchange of
atoms between phases, with bv? the dissipation per unit interfacial
area.

Interface conditions.

The system of constitutive equations and balance laws combine
to give the interface conditions(%)

divsS + (S2 — Sy)n = pv(vy — v,),

(4) e om s
1= ¥ =(Sin)- (Fin) — (Syn) - (Fan) —k — g — bv,

with

- b= 2pv*{[Finf - [Fanf?)

9= —9¢& —divsc + (F'S) - L.

The subscripts 1 and 2 denote the two phases: ¥; and ¥, are
the bulk energies per unit reference volume; S; and S, are the
bulk Piola-Kirchhoff stresses; F; and F, are the bulk deformation
gradients; v; and v, are the material velocities; p is the reference

(*) For statical situations: (4); was derived by Gurtin and Murdoch [14] as
a consequence of balance of forces; (4), and its counterpart for crystal-melt
interactions were derived by Leo and Sekerka [17] (cf. Johnson and Alexander
[3,16]) as Euler-Lagrange equations for stable equilibria. In the absence of
surface stress and surface energy (S = 0,c = 0,4 = 0): (4); is a standard
shock relation; (4); (with b # 0) was established by Abeyaratne and Knowles
[2] and Truskinovsky [20]. Counterparts of (4) for a rigid crystal in an inviscid
melt were derived in [17]; an analog of (4), for a rigid system was given in
[10]. '
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density. The remaining quantities concern the interface: L is the
curvature tensor with «, its trace, the total curvature; divs is the
surface divergence.

The theory of [15] is generalized to include thermal influences,
but I will not discuss these results here.

Simplified equations(®).

Assume that both phases are isotropic with linearized stress-
strain relations in each phase, and neglect all interfacial terms with
the exception of the dissipative term bv in (4). Then for longitudinal
motions with scalar displacement u(z,t) and scalar tensile stress
o(xz,t) the basic equations are(®) the bulk equations

1
(phase 1) CUpy = Upr, 0 =Py, Y= §ﬁ1’u;?;

1
(phase 2) CAUpy = U, O =00+ Patty, % =1ho+ cous + 5521@

and the interface conditions

[0) = —pv[w],  [u] = —v[us],
[¥] = (‘7> [ug] + bv,
where ¢? = §;/p with g; the elastic moduli; ¢y and v, are constants;
[ ] denotes the jump across the interface; () designates the average

interfacial value.

For antiplane shear with scalar displacement u(z,y,t) and shear-
stress vector T(z,y,t) the basic equations are the bulk equations

1
(phase 1) s2Au = uy, T = 1 Vu, P = —2-;11|Vu|2

(phase 2) s2Au=wuy, T =To+pmVu, =1+ To Vu+ %NQIVuP

(3) Cf. [13]
(®) Cf. Abeyaratne and Knowles [2], whose treatment is slightly different.
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and the interface conditions _
[T] - n =pv?[Vy] - n, [u)] = —v[Vu] - n,
[¥] = (T) - n([Vu] - n) + bv,

where A is the laplacian; s} = u;/p with p; the shear moduli; T, and
Yo are constants.
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