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NONLOCAL THEORY OF LONGITUDINAL WAVES
IN THERMOELASTIC BARS

ESIN INAN (Istanbul)

The longitudinal waves in thermoelastic bars are investigated in the
context of nonlocal theory. Using integral forms of constitutive equations,
balance of momenta and energy, field equations are obtained.Then the
frequency equation is found in generalized form. To obtain tangible
results, an approximate procedure is applied and numerical results are
given for short waves.

1. Introduction.

The purpose of this work is to investigate the longitudinal waves
in thermoelastic bars in the context of nonlocal theory. One of the
characteristic result of the wave propagation in rods is a geometrical
dispersion of waves produced by the presence of the boundaries. This
result is obtained by the use of local theory of elasticity.It has been
shown by Nowinski [5] that second type of dispersion appears by the
application of the nonlocal theory. Present work is an extension of this
problem to the nonlocal thermoelasticity.
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2.Fundamental Equations.

We consider an infinitely long rod of a circular cross-section
of radious R. The material of the rod is homogeneous, isotropic
and elastic.Taking into account the thermal effects, the constitutive
equations are [1]

(2.1) thr = AemmOrr + 2pex; — aT b + / [j\leinm.ékl + 2/1/6;” — &/T/(Sk(]dv,
Vv

Here A\, are Lamé constants,)’ and /i’ are nonlocal elastic moduli
which are functions of the distance between an arbitrary point of the
body, x/, and the point under consideration,x, i.e.,

(22,a-1b) B (% —xl), N =X(x —x])

« is a thermal coefficient corresponding to local thermal expansion
and & denotes its nonlocal part. T is the temperature function. A more
convenient form of (2.1) was given by Eringen [2] by incorporating
A\, # and « into ), i/ and & .Then the nonzero stress components
refering to a cylindirical coordinate system (r,0 ,z) can be rewritten
as follows,

o Il 1
_ / (U Ow N '
trr_[/ (A +2p)——+/\ (r +_—’8z’> aT-dv

ou'  Ou' ]
_ / ! o /
teg_/v (A +2u) +,\ <_ar'+~'6z') aT-dv

ou' . Ow ,
bra __/ <5z’ + 57_"—) dv
ow' ou'
_ / ’ Nz /
t“_'/‘;[(/\ +2y)8zl <(9r’+ > aT]dv

where u and w are radial and longitudinal displacements, respectively.
The equations of motions and the equation of balance of energy are

:atrr + ’8trz trr — lgg

(2.3.a — d)
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Here k and 5 are the thermoelastic constants corresponding to
local thermal conducticity and coupling term between the strain and
thermal fields respectively and i’ , i/ are their nonlocal parts and
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We introduce Fourier transform

(2.6) frkw) = 2_17(. [jo [-o; f(r,z,t)expli(kz + wt)]dzdt

and apply the Fourier transformation and Faltung theorems to the
equation (2.4,c) to obtain

T, 4+ p*T + 7iwd =0

= | -

(2.7) T or+

Here, it is considered that the nonlocal moduli are to be distributions
with bounded supports.They are positive functions in a finite
domain about the reference point and vanishing rapitly out of this
domain.Then we consider that the functions that characterize the
particle interactions along radial direction may be approximated in
terms of Dirac delta sequences and we may write

R 00
(2.8) /0 Sn(|rt = r))o(r")dr’ z/(; §(|rt — r|)@(r')dr’ = ¢(r)

Applying the same proceduré to the equations (2.3,a-d) and substituting
the obtained results into the equations (2.4,a-b) we find

Qe + %— + (12 - —1-> Q=0

2
(2.9,a —b) _ =
7.4 0 g Lt (T + L -—sz) 0
! r Fl ’ r
where
(2.10,a — b) 0= !é—g+§——zkw, Q= —(iku+w,)

(2.11,a—d) Ty =T,+2T5, Ty=X(k), Ts=m(k), Ti=a(k)
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2 2 y
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and bared functions denote the Fourier transforms of the related
function. The solution of equation (2.12,a) finite at » = 0 is

(2.13) Q= —-B(I? 4+ k%J,(Ir)

and J; denotes Bessel function of the first kind. Considering Equations
(2.9, a-b) together we find the solutions as

0 = — [A1(A2 + k%) Jo(Mir) + A2(A] + k%) Jo(A2r)]

(2.14,a — b)

= A2+ k? A2+ k2

T = [Al 2 + J()(/\IT') -+ Ag 2 + Jo(AQT)]
Here )2, A\Z are the roots of
(2.15) (A2 = hB)(A? - p?) —iwe(A? + k%) =0
and

Ly

2.16 = —7
(2.16) =T

Assuming the surface of the bar is free of traction and held at
constant temperature, we obtain three algebraic equations for three
unknowns. For nontrivial solution we set the determinant of the
coefficient matrix of these equations to zero which leads to

2 - k2 [A% + k2 (D(/\QR)K,l )\% + k2 ‘(D(/\lR)Ktz ]
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Jo(A:R)

(2.19) P(MR) = ACW) AR
2 2 2 2
p*+k°, - h* + k* .
(2.20,a — b) g(w) = E)—Z__—thw h(w) = -mzw
(2.21,a — b) M=pP4gwe A=hr14h(w)e

3.Nonlocal Moduli.

The nonlocal moduli X, i/, ¢/, ’ and &' are unknown functions of
the distance |x —x’|. ) and ¢/, which are nonlocal elastic moduli can be
determined by matching the dispersion relation for plane waves with
the corresponding equation in lattice dynamics . For one-dimensional
lattice model (which is known as Born-Kdrman model), dispersion
relation within one Brillouin zone is given by

.o (ka
(3.1) @ = - kg 22)
(3)

w

wg
where a is atomic distance.To obtain identical results to the atomic
theory, Eringen [2] has expressed the nonlocal moduli for homogeneous
and isotropic solids in the following forms:

(32) Nlz—2D=ra(le—2]), (e = pa(lz — o))

where

=t (1=, g

(339
:O,

The coefficient of thermal conductivity « can be expressed in
terms of the heat capacity of phonon, average phonon velocity and
the mean free path !. The important point here is that the mean
free path can not be shorter than the wavelength of the phonon and
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the wavelength can not be shorter than a typical distance between
two neighbouring atoms [3]. Combining this result with Eringen’s
approach, which gives perfect agreement with the atomic theory, the
nonlocal heat conduction coefficient ' can be expressed in terms of
the local heat conduction coefficient and a kernel o;(|z — 2'|) as

(3.4) £'(Jz —2')) = key(Jz — 2'))

where
(3.5)
> 1

Now the heat conduction coefficient # (k) is obtained by taking
the Fourier transform of equation (3.4). Then we find

kl
g o (_2—>
(3.6) = 7 (ﬂy = O(kl)
2

Applying the same idea to the next two coefficients, we write
BTa=b) F(z-2) =vam(z-2'), A —2']) = haa(je - 2'))

Here, «; and o4 are defined similar to the form given by equation
(3.5) and b and d denote the range of influence of the associated
kernels.They can not be shorter than atomic distance a.

As it is known we obtain no frequency higher than the cut-
off frequency wo,. Then we restrict our investigation to the region
5t < %8 < T which is called first Brillouin zone. At the ends of -
Brillouin zone we write

(38) Ok =tz =0

Considering this fact for the nonlocal thermal waves we determine
the range of influence of the thermal coefficients. For the nonlocal
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thermal waves, the phase velocity ¢; is given as [4]

_ Y [ 20D
(3.9) Ct = P €y m

Now applying the condition (3.8) to equation (3.9), we find

(3.10) 1<6<1.29

Here 0 is defined as ¢ = . If we apply the same condition to the
phase velocity of modified thermoelastic waves , we find the following
table for b, d, 1 [4]:

7 d/a b/a

1 1 1.4571
1.1 1 1.2350
1.2 1 1.1000

4. Solution of Frequency Equation.

Just as in the local theory, equation (2.17) shows dispersive
character of the wave propagation in bars. A general discussion of
this equation presents considerable diffuculties.For this reason we
resort to an approximate solution and express the frequency equation
in the following form

(4.1) F(w, k) +eG(w, k) = 0

Here

F(w, k) =®(pR)K*(kR)[(B*¢ — 1)y/20 — 1+ (¢ — 1)2\/BC = 1]

(4.2,a — b)
G(w, k) =g(w)@(pR)(IR)(hR)Go(w)
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(4.5,a—¢) pR=kR\/a*¢( -1, hR=EkR\/B*(—-1, IR=kR\/2 -1

(4.6) ®(M\R) = ®(MioR) + ®.(MoR)e  i=1,2.

For ¢ = 0 we obtain the nonlocal elastic solution given by
Nowinski [5]. It is obvious that F(¢,) = 0 for ¢ = 0. Now we may
- consider that é§ is the increment of the value ¢ due to ¢ # 0, then
equation (4.1) can be rewritten in the form of

(4.7) F(Co+8) =—G(Go + b)e

Now by the assumption that é is a small quantity, we may
expand both sides of the equation (4.1) into Taylor series in the
vicinity of the point {, and keep only the first two terms.This leads to

(4.8) §(Co,8) = — _g}i‘))
{o

a
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In general § is a complex number. Its real part denotes the
change of the phase velocity and imaginary part shows the attenuation
constant. Here we are mainly interested in with two limit cases. For
long waves one has to consider the limits at £ — 0. Calculations give
us that the nonlocal and local aspects of the long wave limit become
identical as it is expected. For short waves i.e. k — oo,the arguments
of Bessel functions become imaginary , then equation (4.2,a) simplifies
to the cubic equation [5]

(4.9) F(¢) =¢* = 4¢* + (6 — 28*)¢ + (8" - 2)

and equation (4.3) turns out to be

Go(C) = — iK [_ 1+ 6%¢ N BVQ (i-Q

(4.10) T /KR VBC=T i-p*Q/{i—Q

| VBC=T] | 1-¢  i=pC=D] .0
[H(C“l)\/““‘“24—1J+\/—“2g—1+\/——2<—1z'g—m]_ﬂm

Numerical calculations are carried out for a circular bar made
of aliminum for which a ~4.10-8 ¢cm and for 6 =1.1, ¢ =1 and

A = 5.55 10%kg/em?, p = 2.612 10%kg/em? (at Ty = 20°C)
k = 0.61cm?/sec, p = 2.75gr/cm3, ¢y = 3.04 10%cm/sec,
n = 939.52sec’C/cm?, ¢ = 0.0368, §* = 0.4849, (o = 0.435.

Q by & %;C-
10—6 2.101 103 0.224 106 2.314 103
10-° 2.013 103 0.172 10-° 2.313 10-3
10—4 2.012 10—3 0.154 10~* 2.312 1073
10-3 2.008 103 0.149 10-3 2.307 103
10~2 1.991 10-3 0.147 102 2.288 103
10-1 1.287 103 0.146 10-1 1.480 10-3

We note that the dimensionless frequency Q for mechanical
vibrations occuring in practice is much smaller than unity (Q < 1).
Above table tells us that the change of the phase velocity is decreasing
with the increasing value of the frequency. But these changes are
less than it is observed in the local theory. The situation is different
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for attenuation constant. It is increasing with increasing Q as is
expected.
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