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THERMODYNAMICS OF LIGHT
AND SOUND

G. M. KREMER (Curitiba) - INGO MULLER (Berlin)

Light in a cavity and sound in a solid may be considered as
gases of quasiparticles, the photons and photons respectively. It is then
possible to treat them thermodynamically. The first successful attempt
in that direction was Boltzmann’s derivation of what we now call the
Stefan-Boltzmann law. That law relates the energy density of cavity
radiation in equilibrium with the wall to the temperature of the wall.

Radiation hydrodynamics or radiation thermodynamics is important
for the theory of stellar structure, because the radiation pressure in
stars equilibrates the gravitational pull. Eddington, a pioneer of stellar
physics, was able to derive the general form of the stress tensor of
radiation which he wrote as

1—-x. 3x — 1 pip;
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e and p; are the densities of energy and momentum. y is called the
Eddington factor, it is a function of ¢ and p?.

The form of that function is much discussed in the literature. As
recently as 1984 Levermore [1] has compared several propositions for
the Eddington factors. More recently Anile, Pennisi and Sammartino
[2] have approached the problem by use of extended thermodynamics.

~ They showed that x must have the form
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That form was also confirmed by Kremer and Miiller [3] by a different
approach.

This paper presents a thermodynamic theory of light and sound.
It demonstrates that extended thermodynamics permits the explicit
calculation of the main part of the equations of balance of energy for
photons and phonons. Wave speeds are calculated and the limiting
cases of near-equilibrium and free streaming are discussed.

1. Phonons and Photons.
1.1. Cavity Radiation and Sound in Single Crystals.

Light and Sound are waves, electro-magnetic and elastic respec-
tively. But in some ways, which the physicists understand they may
be considered as a gas of particles, the photons and phonons.

Thus a wave of frequency w and wave number k corresponds to
a particle of energy %w and momentum %k. The frequency and the
wave number are not independent, of course. For light we have

(1.1) | w = ck,

where c is the speed of light. For sound the dispersion relation w = w(k)
is more complex, but it reduces to (1.1) — with ¢ as the speed of
sound - for longitudinal sound waves of small frequencies. This is the
only case we shall consider here so that equation (1.1) holds for both
photons and phonons. We shall refer to these particles as photons.

To fix the ideas about the systems under consideration we have
drawn Figure 1. On the left hand side we show a cylinder closed off
by a piston and filled with radiation, i.e. a gas of photons.

In equilibrium the temperature of the wall of this cavity is
T everywhere and the photons exert a pressure p on the piston.
Kirchhoff’s experiments — more than 100 years ago — have shown that
the energy density of the radiation is a function only of temperature

(1.2) e = e(T)

On the right hand side of Figure 1 we see a single crystal
specimen of some solid «filled with sound», a gas of phonons. In
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equilibrium the temperature is uniformly equal to 7" and specific heat
measurements show that the energy density is only a function of T,
at least if we can assume incompressibility of the body.
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Fig. 1 - A photon gas and a phonon gas.

1.2. Thermodynamic Processes.

The objective of thermodynamics of photons is the determination
of 8 fields, viz.

photon number density » photon flux jj
(1.3) .
energy density e energy flux Q.

These quantities are objective scalars and vectors respectively.
The necessary field equations are based upon the balance equations
for '

(1.4) '-
on  Ojx 0ji | '0Jik _
photon number B + Py = P, photon flux B + - e P;;
e | OQk Opi | ‘0P
— 4+ — =P, —2 =P,..
energy 5 + - . . momentum - 5 + . Py,

We make some specific assumptions relating the quantities in
(1.4). We assume

(1.5) Jix, Pk — symmetric tensors, J; = nc?, P; = e, Q; = p;c?.

These assumptions seem arbitrary at this stage but they are
really well-motivated as we shall see in the next section. First,
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however, we complete the discussion of the structure of the theory.
The system of equations (1.4) is closed by considering the flux
tensors Jiz, P and the productions P, through P,; as constitutive
quantities. As usual in extended thermodynamics the generic form of
the constitutive equations reads

(16) C = é(n,j,',e,p,")

so that the value of a constitutive quantity at a point and time
depends only on the values of the fields (1.3) at that point and time.

If the constitutive functions C' were known, we could eliminate
the consitutive quantities from the balance and obtain a specific
set of field equations. Every solution of these equations is called a
thermodynamic process.

1.3. Motivations.

There are two sources of motivation for the assumptions (1.5),
the first only valid for photons. The Maxwell equations and the
Maxwell-Lorentz aether relations

1
(1.7) D; =eoE; Hi= —B;

Ho
imply equations of balance for energy and momentum of the
electro-magnetic field. In terms of the electric field E, the dielectric
displacement D, the magnetic filed H and the magnetlc flux density

B, we have,

s  F=3ED+BH) #=(Dxm)
Or= (E x H); Pi= L(ED x BH)6;, — E; Dy — B; I,

Inspection shows that }’,n; is symmetric and obviously we hellve

em em
P;="¢". Also, by (1.7) we see that Qy=57 ¢? holds, since ¢? = —"
oMo

Thus the Maxwell theory of electrodynamics supports some of the
assumptions (1.5).

The second source of motivation for those assumptions may be
found in the kinetic theory of photons. In that theory one introduces
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a phase density f(x k,t) such that f(x,k,¢)dxdk is the number of
photons with k at x,t. This phase density obeys a balance law, the
Boltzmann-Peierls equation.

"~ of 8w,f_ Ow ki
(1.9) i oo, with Wi = o or with (1.1) : w; = c7c—

P is the production density of photons in the phase space spanned by
k and x.

Integration over k after multiplication by 1 8w

k;
T k,hw and

hk; leads to the following four balance laws

/fdk+6 k’fdk /Pdk

/ fdk+—6~/ kk’fdk /c—Pdk

,;% f hek fdk + .i / he2k; fdk = / hw Pdk

gt-/hk,-fquu /h kk’fdk /ﬁdek

(1.10)

/ fdk is obviously the number density of photons while / hwfdk and

/ hk;fdk are the densities of energy and momentum. Therefore the

equations (1.10) must be interpreted as the balance équations for
photon number, photon flux, photon energy and photon momentum.

Comparison with (1.4) provides the following interpretations
: ki
n:/fdk Ji = c—k—fdk P,,:/Pdk

J,-k:/ k’“’“fdk P = c%Pdk
(1.11) :
e= /hckfdk Q; = /ﬁc2k;fdk P = /thdk

pi = /hk;fdk Py = cmfdk P, = /ﬁk,-Pdk
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Inspection shows that the assumptions (1.5) are confirmed by
the equations (1.11). Also, since w and k; are an objective scalar
‘and vector respectively — at least in a non-relativistic theory — we
conclude that the quantities n through P,, in (1.3) are all objective.

1.4. Principles of the Constitutive Theory.

In order to restrict the generality of the constitutive functions
we exploit the three restrictive principles of the constitutive theory
- of extended thermodynamics, viz.

the principle of relativity
the entropy principle, and

the requirement of convexity and causality.

The principle of relativity requires that the field equations be
invariant under changes of frame.

In the present case where the equations (1.4) are themselves
invariant, this implies that the constitutive functions C in (1.6) are
isotropic functions. ’

The entropy principle requires that the inequality

Oh 0%,
1 h R A )
(1.12) ot + Ox; 20

holds for all thermodynamic processes. The entropy density ~» and the
entropy flux ®; are constitutive quantities of the generic form (1.6).
The requirement of convexity and causality states that the
matrix of second derivatives of h with respect to its variables n, j;, e,
p; be negative definite. |

1.5. Exploitation of the Entropy Principle.

The key to the exploitation of the entropy inequality is the
statement that (1.12) must hold for all thermodynamic processes
rather than for all fields. We may eliminate that constraint by the
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use of Lagrange multipliers. Indeed the larger inequality

0h+8<1> /\(@Lﬁg&_&) A<5Jz+3J Pj,,>-

ot = Oz, ot Oz, Ot 0
(1.13) be 60 ) 5
€ e - Di P,
A(at oz “Pe) A(aﬁsz;“]’m)?o

must hold for all fields n, j;, e, p;. The Lagrange multipliers ), );, A, A;
may be functions of n, j;, ¢, and p;; they must be isotropic functions
because of the principle of relativity.

We insert the constitutive relations (1.6) and employ the chain
rule to write the inequality (1.13) in a more explicit form, viz.

(1.14)
() ()5 (e a e -ng)
+<@h e ) O
(2 () (e )
o )

— AP = AP}, — AP, — A;P,, > 0.

The left hand side of this inequality is explicitly linear in the
derivatives
On 9j; ‘On 0j, Ge Op; De Op,
ot’ 0t 0z, 0z, Ot Ot Iz, Oz,

(1.15)

Since these derivatives are arbitrary we could violate the
inequality if they were to contribute to its left hand side. Therefore
the underlined quantities in (1.14) must vanish, a requirement which
we summarize as follows.

dh = Adn + Aidj; + Ade + Aidp;

(1.16)
d®, = Adj. + MidJ;e + Ac*dp. + A;dP;e
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There remains the residual inequality
(1.17) AP, + APy, + AP, + Ai Py, 2 0.

In equilibrium we expect the photon flux and the momentum
density to vanish. Therefore the Lagrange multipliers ); and A; must
also vanish in equilibrium and (1.16) implies

(1.18) dhg = Agdn + Agde.

By comparison with the Gibbs equation of thermostatics we
conclude

(1.19) Ag=—— and Ap= 5

where g = e — Thg + 1 P;; is the free enthalpy of the photon gas. The
integrability condition implied by (1.18) reads

(), (50). o -2 (50),-(57),

. - '6hE . 1
with P; = e and (—_%)n =7 we have

0T 0T ‘Oe
T—de (at),, =on (52),, (‘EE)T'

Since by (1.2) e depends on T only we obtain

(1.20) e = oT*

This is the well-known law of Stefan-Boltzmann, found empirically
by Stefan and derived — from the Gibbs equation (1.18) in the above
manner — by Boltzmann.

For the exploitation of the equations (1.16) it is convenient to
introduce the potentials

B =—=h4+An+ Xji + Ae+ Ajp; and

(1.21) , _ ;
q)i =—9; + )‘.71' + )\e']ez' + Ac pi + AcPei
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so that (1.16) assumes the form

dh’ = ndX + j;dA; + edA + pidA;
(1.22)
d®; = j;d\ + JijdX; + pic’dA + PyjdA;.

It follows that the knowledge of »' and ®; as functions of the
variables A, \;, A, A; suffices to calculate n, jj;, ¢, p;, Ji; and P;; as
functions of these variables. Therefore ' and &, are properly called
potentials.

The conditions (1.22) have not been exploited yet in full generality,
nor will this be done here.

We shall, however, proceed to illustrate their restrictive character

by investigating a special case, the case where ¢ and p; are the only
fields.

2. Energy and Momentum of Light and Sound.
2.1. Eddington Factor, Entropy and Entropy Flux.

We restrict the scope of the theory by considering its objective
to be the determination of 4 fields, namely

(2.1) energy density e momentum density p;.

In this case the relevant balance laws are those for energy and
momentum, viz. :

de | 0Qx Op; | 0P

. — =P, d — =P,..

(22) Ot Oz an Ot + Oz, By
As before we assume

(2.3) ng ~ symmetric, P;,‘ =€, Q; = p,'cz.

We close the system (2.2) by the formulation of constitutive
equations for P;; and P., P, of the generic form

(2.4) C = Cle,p).
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The functions C must be isotropic functions so that we have the
representations

1-— 3x — 1p;
(25) Pp=e (...El&k + X2 %%’i) where X = X(C,pza)'

There is only one scalar coefficient in (2.5), because of the
constraint (2.3),. x is called the Eddington factor, because Eddington
has first introduced it in connection with the radiative stress in stars.

The entropy principle will restrict the function y. The restrictions
have been given in Section 1.5 for the general case. In the present
case there remain only those parts of the condltlons that refer to the
fields e and p. Therefore we have

dh' = edA + p;dA; h = —h'+ Ae + A;p;
(2.6) where
4} = pic*dA + PyjdA, ®; =~ + Ac’p; + A; Pj;

and the residual inequality reads

(2.7) AP, + A; Py, > 0.

k' and @} are functions of A and A; so that we have
(2.8) h'=h(A,L) and &= go(A,L)A;

where L stands for A;A;. More explicitly the equations (2.6) read
therefore
Ohn' on' Op

(2.9) e =e¢, 2o A; = p;,

I
5A 5L Q—A;Aj + <p5.,'j = P,j

. = o2
AZ—CPZ) 8_[/

The exploitation proceeds as follows. Elimination of p; between

(2.9), 5 gives

o
oL

Dy Be 1 9%p
5X hence by (2. 9)1 — = oL

1
= 92 T 2e2 OA2

(2.10)
The trace of (2.9), reads with

oy L+3go_e

(2.11) =
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and if this is combined with (2.10); we obtain a differential equation
for ¢, viz.
&% Op 19%

(2.12) pal t 1050 = 50

It is possible to find the general solution of this differential
equation for a given function ¢,(A,0).

The solution can be found in [4]. Here we shall follow [3] and
derive the solution by making a power Ansatz of the form

(2.13) ' =" o (AL

Insertion into the differential equation (2.12) leads to a recurrence
relation of the form

_ 1t 1 er
Pr+l T 06 (r 4 1)(2r + 5) OAZ

(2.14)

The initiation for the solution of this relation is provided by
(2.11) and (1.19);, (1.20) from which formulae we obtain

1

(2.15) o(A) = %eE(A) - %UF.

A simple calculation will then show that the solution of the
recurrence relation (2.14) reads

o 1\
(2.16) ¢r_§A4(r+1) <c2A2> .

Hence we obtain

el & L\ ¢ 1

Now that ¢ is known as an explicit function of A and L, we may
calculate e and p? from (2.11) and (2.9); respectively

L L

218 _Z 3A2+'C—2' 622_23 16Azc—2
(‘ ) 6—3 , I 3! p = 9 , I 6
-5 -5
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We may invert these equations and obtain A and L as functions

9 . . 3 c?p? 1/
of e and p?. We obtain with VE ( -~ Z_EZ_>
o/t 1 (1 _*_\/)5/4
= 91/2 p1/4 g 2,273/%
p
P+V"§?T]
(2.19)
L 3251/2 1 2p? (1 +\/)1/2
2 93 gl/2 g2 ERTEE
D
P+¢‘§:T}

It follows from (2.18) that

(2.20) v = é(\/élez —3¢c2p? — e), g—;l) —e— % 4e? — 3c?p?

so that, by (2.9), we have

1 CZPQ C2p2 DiD;
(221) Pij =¢€ (g(\ 4 — 3—;2— - 1) (5,’j -+ (2 — /4 - 36—2> ;21 .

Comparison with (2.5) shows that the Eddington factor has thus
been identified as

5 2 c?p?
X=37sVEiTi

(2.22)
We shall represent all subsequent results in terms of the
Eddington factor and for that purpose we list the following identities
that follows from (2.22) and (2.19)
2,,2

c?p? 3 | 1 11 Mt (B —x)l/?
2 = 107% (x— 5) A= BT AT (T

(2.23)
L 21/2 0,1/2 1
2 ~ 3172 .1]2 (1 _X)l/z‘

A% —

We proceed to calculate the entropic quantities. First the entropy
density and its flux. By (2.10),, (2.9); and (2.8), we have

(2.24) - A 5, hence by (2.6), h = —éo A

3 L 3 IRk
[Az - c‘z] [Az - c—z}
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®; = pA;, hence by (2.6),

. L 2
. 2 L
(2.25) _ 4 Ay [A 02] 2
‘(bz' = ——3—0' = A cop;.

I 2
-]
By use of (2.23) we therefore obtain for the entropy density and the
entropy flux as functions of e and p:

414343 1/2 1/4
b= go el 3= (1= ),

95/4 (1 _ X’)1/4 o\ 1/4 )
®i =i B = )i (E) P

(2.26)

2.2. Summary of Results and Limiting Cases.

The field equations for the determination of energy and momen-
tum of the photons read

e  ,0pr _ Op; 0P
’-5{+ 6:c =Fe Ot + VoL 3)

13

(2.27) = Pp,.
The main part of these equations has become fully explicit by

the application of the entropy principle. We have obtained

c2p?

2

(2.28) f’;kze(lgxéik-}-?)xgl%—),Whel‘eX:

W] ot

is the Eddington factor.
Moreover we have determined the entropy density and its flux,
viz.
pod 1/463/43 (3= )2(1 = x)H14,

3 27/4
(2.29)

925/4 (1_)0)1/4 o\ 1/4 )
® =3 (3 — x)172 (Z) ¢ pi.

We distinguish two limiting cases as follows

i.) the near-equilibrium case cp < e.



226 G.M. KREMER - INGO MULLER

In that case y — -:IJ; and the momentum flux becomes isotropic

(2.30) Py = %‘5,-,;.

The entropy density and entropy flux assume the forms

1/4
(2.31) h = 301/463/4 PD; = (%) c2p;
which by use of the equilibrium relation (1.20) we may write in
the form
4 c2p;
(2.32) h=3zoT® &= 1{’ .

It is remarkable that the entropy flux for photons near equilibrium
has the same form as in a particle gas near equilibrium, namely
energy flux divided by absolute temperature.

ii.) the free-streaming case cp;<en; where n; is a unit vector in the
streaming direction. In that case y — 1 and the momentum flux
reads

(233) . Pik =en;ng.

The entropy density is constant and the entropy flux vanishes.

2.3. Waves.

It is instructive to investigate linear wave propagation in the
two limiting cases that we have discussed.

In the near equilibrium case, we linearize the equations (2.27)
in p and obtain with (2.30)

‘Oe Opr
2.34 — 42T Py = Bop;
(234 T om0 o 30w
where B, is the equilibrium value of the coefficient B that determines
the momentum production P,; = By,.
We eliminate p frora these equations and obtain a telegraph

equation of the form

Op; 1 e

9% de c? O%
(2.35) o = 2% T 3 owi0n
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This equation describes the propagation of a damped wave in all

directions with the speed |
[

2.36 V=—.
(2.36) 7

In the case of phonons this mode of propagation is often called
the second sound.

In the free streaming case e have P, =0 and P,;, = 0. The two
equations (2.27) read with p; = En' and P = en;n;, see (2.37)

Oe Oe 1 Qe Oe

(2.37) o T, o2 = =0 and Sty g g — o = 0.

These equations are identical. They describe the propagation of
a wave in the direction of n; with the speed

(2.38) V=e.

This mode of propagation is called ballistic in the case of phonons
while in the case of light it represents the free streaming of photons
in a laser beam (say).
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