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SHOCK STRUCTURE IN MASSLESS GASES
A. MAJORANA (Catania) - O. MUSCATO (Catania)

The shock structure problem is investigated in the framework of
the Eckart theory of irreversible thermodynamics in the ultrarelativistic
limit. It is considered a neutrino gas and a gas in the approximation
of hard sphere model.

1. Introduction.

Relativistic shock waves are a subject of importance for various
areas of astrophysics and laboratory plasma physics [1]. A mathemat-
ical idealization treats shock waves as discontinuities; a more realistic
description is in terms of a thin layer where the fluid variables vary
rapidly but smoothly. The thickness of the shock layer is determined
by dissipative process and is usually of the same order of a mean
free path. |

We shall study the shock structure problem in the framework
of the Eckart theory of irreversible thermodynamics [2] in the
ultrarelativistic limit. We shall limit our analysis for two kind of
particles, e.g. a neutrino gas and an hard sphere model gas: they
may be considered test problems for the hydrodynamical model of
Eckart. A qualitative analysis of this problem was performed by
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Koch [3] ; Kosowski [4] studied the structure of shock waves in an
ultrarelativistic case for a constant differential cross section, but the
results are incorrect because the transport coefficients are wrong.

2. Basic equations.

We shall consider a simple neutral gas in the flat space-time
of special relativity with inertial coordinates z* = (ct,z,y,z) and
metric tensor ¢*® = diag(~1,1,1,1). A simple gas is descrlbed by the
conservation laws: :

(1) BN =0, 0,7 =0

where N is the particle flux vector, and 7% is the energy-momentum
tensor. As usually we split the energy momentum tensor in the non
dissipative part 72 (which depends only by the hydrodynamical
velocity, the particle density n and the absolute temperature 7) and
in the irreversible part Tf‘ﬁ (which contains also the heat flux ¢*, the
shear stress I1*° and the bulk stress = ), such that

T =T3P 4 T9F,

In the particle frame of reference N and 7*? take the form:

(2) : N® = cnu®

(3) Te? = me*nG(2)u®v? + nkpTg*?
X

(4) TP = S (¢%u® +¢Pu®) + P 4 7ho?

where ¢ is the light speed, cu® is the fluid four-velocity, m the mass
particle, kp the Boltzmann constant, h*% = ¢*f + y*uf and

K3(z)  _ me?
Ko(z) ' ° " kpT

G(z) =

K, (2) being the modified Bessel function of the second kind.
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3. The shock structure problem.

Let us consider a steady one-dimensional flow such that, in
an appropriate coordinate frame, all the thermodynamical quantities
depend only on a single spatial coordinate z. We also assume that

u® = T'(e,v,0,0)

v being the z-velocity and T the Lorentz factor. Hence from Eqs. (1)
we obtain the conservation equations

(5) v Tod: ra’ N1=M

where K* and M are constants.

The plane shock structure problem [5] consists of finding an
unique solution (apart from translations) of hydrodynamic equations
(1), with the boundary conditions given by assuming that the gas
reaches equilibrium states as  — —oo0 and z — +o0, i.e.

(6) lim 7% = 0.

r—too

These conditions imply

lim ¢*=0, lim I**=0, lim n=0.
r—too r—too r—too
The equilibrium states are completely described by the particle
density, the temperature and the fluid four-velocity: in the case of
one-dimensional flow these quantities reduce to n, 7', v. We denote
the limit values by n,, T, vy and n_, 7_, v_, where the subscripts
indicate ¢ — 400 or x — —oo respectively .

The boundary conditions (6) with Eqs.(5), give some restrictions
(the Rankine-Hugoniot equations) for the above six quantities: these
relations are described in a complete way by one of the author [6],
showing that explicit analytic solutions for the Rankine-Hugoniot
conditions in term of Ty, 7_ and n. exist. Our analysis will restrict
to the ultrarelativistic limit, where

mc2

%aT <1
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and we can assume that

Gs) ==

It is useful to introduce dimensionless variables: we choose

rr
X=n_o_z, 7= T
where o_ = ¢(T_) is the characteristic differential cross section

depending only on 7 and (n-o_)~! is the limit mean free path as
£ — —00.

Therefore from Eqs.(5) and the Rankine-Hugoniot relations we
obtain -

/\Qﬁ=3r(1—v2f)+ 3v_+—1— v —4
7 dX v-
Ao -2 (L-30) 18 402 (30 + L
ng-—r —v5 " v+ 3v v -t
where
(8) Ag = A n_o., A S MPn_o
T Mkp 7 N T 3 MEpTLTL

Elementary qualitative theory of ordinary differential equations
shows that a necessary condition of the existence of solutions of the
shock structure is that the boundary points must be singular points
of (7), i.e.

(9) lim (v,7) = (v-,1), x_ljr_:loo(v,r) = (—L, 1).

r——00 v_
It is proved that the boundary points are respectively a saddle point
and a node, and than an unique solution exists. We have studied
Eqs.(7) allowing v- to vary in the range (1//3,1) and we have
evaluated the shock waves thickness S defined by

_ lv— — vy

dx

max
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for two type of particles: a neutrino gas and a gas in the approximation
of hard sphere model. For the neutrino gas [2]:

. 3 T\? 1™
(11) Ag = 320773 v_ <;> ) As = 18473 v_ 7
whereas in the other case [2,7]
. 1 _ 4 9
(12) A = al_v_’ As = 5T _v_ .

We remark that the Eqgs.(7) do not contain the parameter T , as
one expects in the ultrarelativistic framework: therefore the shock
thickness will depend only on the velocity v_. We have integrated the
differential equation by using standard numerical procedures and we
evaluated S as a function of v_. The results are presented in Ref. 8.
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