SHOCK STRUCTURE IN MASSLESS GASES

A. MAJORANA (Catania) - O. MUSCATO (Catania)

The shock structure problem is investigated in the framework of the Eckart theory of irreversible thermodynamics in the ultrarelativistic limit. It is considered a neutrino gas and a gas in the approximation of hard sphere model.

1. Introduction.

Relativistic shock waves are a subject of importance for various areas of astrophysics and laboratory plasma physics [1]. A mathematical idealization treats shock waves as discontinuities; a more realistic description is in terms of a thin layer where the fluid variables vary rapidly but smoothly. The thickness of the shock layer is determined by dissipative process and is usually of the same order of a mean free path.

We shall study the shock structure problem in the framework of the Eckart theory of irreversible thermodynamics [2] in the ultrarelativistic limit. We shall limit our analysis for two kind of particles, e.g. a neutrino gas and an hard sphere model gas: they may be considered test problems for the hydrodynamical model of Eckart. A qualitative analysis of this problem was performed by

Koch [3]; Kosowski [4] studied the structure of shock waves in an ultrarelativistic case for a constant differential cross section, but the results are incorrect because the transport coefficients are wrong.

2. Basic equations.

We shall consider a simple neutral gas in the flat space-time of special relativity with inertial coordinates $x^{\alpha} = (ct, x, y, z)$ and metric tensor $g^{\alpha\beta} = diag(-1, 1, 1, 1)$. A simple gas is described by the conservation laws:

$$\partial_{\alpha} N^{\alpha} = 0 \ , \ \partial_{\alpha} T^{\alpha\beta} = 0$$

where N^{α} is the particle flux vector, and $T^{\alpha\beta}$ is the energy-momentum tensor. As usually we split the energy momentum tensor in the non dissipative part $T_0^{\alpha\beta}$ (which depends only by the hydrodynamical velocity, the particle density n and the absolute temperature T) and in the irreversible part $T_1^{\alpha\beta}$ (which contains also the heat flux q^{α} , the shear stress $\Pi^{\alpha\beta}$ and the bulk stress π), such that

$$T^{\alpha\beta} = T_0^{\alpha\beta} + T_1^{\alpha\beta}.$$

In the particle frame of reference N^{α} and $T^{\alpha\beta}$ take the form:

$$(2) N^{\alpha} = cnu^{\alpha}$$

(3)
$$T_0^{\alpha\beta} = mc^2 nG(z)u^{\alpha}u^{\beta} + nk_B Tg^{\alpha\beta}$$

(4)
$$T_1^{\alpha\beta} = \frac{1}{c} \left(q^{\alpha} u^{\beta} + q^{\beta} u^{\alpha} \right) + \Pi^{\alpha\beta} + \pi h^{\alpha\beta}$$

where c is the light speed, cu^{α} is the fluid four-velocity, m the mass particle, k_B the Boltzmann constant, $h^{\alpha\beta} = g^{\alpha\beta} + u^{\alpha}u^{\beta}$ and

$$G(z) = \frac{K_3(z)}{K_2(z)} \ , \ z = \frac{mc^2}{k_B T}$$

 $K_n(z)$ being the modified Bessel function of the second kind.

3. The shock structure problem.

Let us consider a steady one-dimensional flow such that, in an appropriate coordinate frame, all the thermodynamical quantities depend only on a single spatial coordinate x. We also assume that

$$u^{\alpha} = \Gamma(c, v, 0, 0)$$

v being the x-velocity and Γ the Lorentz factor. Hence from Eqs. (1) we obtain the conservation equations

$$(5) T^{\alpha 1} = K^{\alpha} , N^1 = M$$

where K^{α} and M are constants.

The plane shock structure problem [5] consists of finding an unique solution (apart from translations) of hydrodynamic equations (1), with the boundary conditions given by assuming that the gas reaches equilibrium states as $x \to -\infty$ and $x \to +\infty$, i.e.

$$\lim_{x \to \pm \infty} T_1^{\alpha\beta} = 0.$$

These conditions imply

$$\lim_{x \to \pm \infty} q^{\alpha} = 0 , \lim_{x \to \pm \infty} \Pi^{\alpha\beta} = 0 , \lim_{x \to \pm \infty} \pi = 0.$$

The equilibrium states are completely described by the particle density, the temperature and the fluid four-velocity: in the case of one-dimensional flow these quantities reduce to n, T, v. We denote the limit values by n_+ , T_+ , v_+ and n_- , T_- , v_- , where the subscripts indicate $x \to +\infty$ or $x \to -\infty$ respectively.

The boundary conditions (6) with Eqs.(5), give some restrictions (the Rankine-Hugoniot equations) for the above six quantities: these relations are described in a complete way by one of the author [6], showing that explicit analytic solutions for the Rankine-Hugoniot conditions in term of T_+ , T_- and n_- exist. Our analysis will restrict to the ultrarelativistic limit, where

$$\frac{mc^2}{k_BT} \ll 1$$

and we can assume that

$$G(z) = \frac{4}{z}.$$

It is useful to introduce dimensionless variables: we choose

$$X = n_- \sigma_- x, \ \tau = \frac{\Gamma T}{\Gamma_- T_-}$$

where $\sigma_{-} = \sigma(T_{-})$ is the characteristic differential cross section depending only on T and $(n_{-}\sigma_{-})^{-1}$ is the limit mean free path as $x \to -\infty$.

Therefore from Eqs.(5) and the Rankine-Hugoniot relations we obtain

(7)
$$\begin{cases} \lambda_Q \frac{d\tau}{dX} = 3\tau (1 - v^2) + \left(3v_- + \frac{1}{v_-}\right)v - 4\\ \lambda_S \frac{dv}{dX} = \tau (1 - v^2)\left(\frac{1}{v} - 3v\right) + 8v - (1 + v^2)\left(3v_- + \frac{1}{v_-}\right) \end{cases}$$

where

(8)
$$\lambda_Q = \frac{\lambda}{Mk_B} n_- \sigma_- , \ \lambda_S = \frac{4}{3} \frac{\eta c^2}{Mk_B T_- \Gamma_-} \Gamma^3 n_- \sigma_-.$$

Elementary qualitative theory of ordinary differential equations shows that a necessary condition of the existence of solutions of the shock structure is that the boundary points must be singular points of (7), i.e.

(9)
$$\lim_{x \to -\infty} (v, \tau) = (v_{-}, 1) , \lim_{x \to +\infty} (v, \tau) = (\frac{1}{3v}, 1).$$

It is proved that the boundary points are respectively a saddle point and a node, and than an unique solution exists. We have studied Eqs.(7) allowing v_{-} to vary in the range $(1/\sqrt{3},1)$ and we have evaluated the shock waves thickness S defined by

(10)
$$S = \frac{|v_{-} - v_{+}|}{\left|\frac{dv}{dX}\right|_{max}}.$$

for two type of particles: a neutrino gas and a gas in the approximation of *hard sphere* model. For the neutrino gas [2]:

(11)
$$\lambda_Q = \frac{3}{320\pi\Gamma_-^3 v_-} \left(\frac{\Gamma}{\tau}\right)^2, \ \lambda_S = \frac{1}{184\pi\Gamma^3 v_-} \frac{\Gamma^4}{\tau}$$

whereas in the other case [2,7]

(12)
$$\lambda_Q = \frac{1}{\pi \Gamma_- v_-} , \ \lambda_S = \frac{4}{5\pi \Gamma_- v_-} \Gamma^2 \tau.$$

We remark that the Eqs.(7) do not contain the parameter T_{-} , as one expects in the ultrarelativistic framework: therefore the shock thickness will depend only on the velocity v_{-} . We have integrated the differential equation by using standard numerical procedures and we evaluated S as a function of v_{-} . The results are presented in Ref. 8.

REFERENCES

- [1] Anile A.M., Non linear wave propagation in relativistic hydrodynamics and cosmology in "General Relativity and Gravitation" B.Bertotti et al. (eds.) (1984), 313-335.
- [2] De Groot S.R., van Leeuwen W.A. and van Weert Ch. G., Relativistic Kinetic Theory, Amsterdam 1980, North-Holland.
- [3] Koch P.A., Relativistic Shock Structure, Phys. Rev. A 140 (1965), 1161-1165.
- [4] Kosowski S., The structure of a shock wave in an ultrarelativistic gas, Arch. Mech. Stosow. 1 (1969), 33-48.
- [5] Majorana A. and Motta S., Shock Structure in Relativistic Fluid-Dynamics, J. Non-Equilib. Thermodyn. 10 (1985), 29-36.
- [6] Majorana A., Analytical Solutions of the Rankine-Hugoniot Relations for a Relativistic Simple Gas, Il Nuovo Cimento 98B (1987), 111-118.
- [7] Majorana A., Branchina V., On the transport coefficients for a relativistic gas of hard spheres, Le Matematiche XL (1985), 267-273.
- [8] Majorana A., Muscato O., Shock structure in an ultrarelativistic gas, Meccanica 25 (1990), 77-82.

A. Majorana Dipartimento di Matematica, Universitá di Catania O. Muscato Dipartimento di Matematica, Universitá di Catania