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MATHEMATICAL ASPECTS OF
HYDRODYNAMIC MODELS FOR
SEMICONDUCTORS DEVICE SIMULATION

ARMANDO MAJORANA (Catania) - GIOVANNI RUSSO (Aquila)

Two hydrodynamic models of a semiconductor device are considered.
The first one takes into account thermal and collisional effects, while
neglecting viscous terms, which are included in the second. A qualitative
analysis of stationary one-dimensional solutions is performed and some
numerical results are presented.

1. Introduction.

In recent years hydrodynamic models describing carrier flow
in semiconductor devices have attracted considerable interest. The
role of simulation has become more and more relevant in designing
and analyzing new electronic devices. A fully kinetic treatment of
carrier dynamics gives a complete description of the physical system,
but realistic applications require complicated and very expensive
numerical calculations. The drift-diffusion model has been widely
used in the past, when it provided a good description of the relevant
physical mechanisms. In modern devices, whose size is in the
submicron range, ballistic and inertial effects play an important role
and are not adequately modeled by the previous approach. In fact the
drift-diffusion scheme does not take into account thermal and inertial
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effects and collisions are roughly described by the mobility. Recently,
hydrodynamic models have been introduced [1, 2], which have been
derived from kinetic equations. The should adequately treat the
aforesaid phenomena, without the high cost of kinetic simulation. The
model we consider has been proposed by Baccarani and Wordeman
[1]. The evolution of an electron gas in a semiconductor is described
by the balance equations for electric charge, momentum and energy.
Collisions of the electrons with the lattice are taken into account via
suitable relaxation terms on the right hand side of the equations.
Energy exchange between the electrons is modeled by the Fourier law.
In the scheme they propose, viscous effects are considered negligible.
As a consequence of this approximation, a “characteristic velocity”
appears, which is different from the usual sound speed [3]. This
velocity discriminates between “subsonic” and “supersonic” flow, in a
way analogous to what happens in classical gas dynamics.

2. Field equations.

The physical system under consideration is a gas of electrons
that interact with the lattice. The electron gas is treated as a
perfect, monatomic classical gas, defined by a density, temperature
and velocity. The effect of the holes is neglected. This scheme seems
suitable for n-doped device simulation.

The balance equations are given by

on
(2.1) ot V. (nv)=Qn
d
(2.2) (—,ﬁ(mnv) + V.- (mnv@v)+ V. -P+enE=mQ,
ow
(2.3) —:(,—)¥—+V-(Wv+7’-v+q)_+enE—v:Qs

where n is the particle density (per unit mass), v is the mean velocity,
e is the negative of the electron charge (e > 0), and m represents
the effective electron mass. The electric field is denoted by E, and
the stress tensor by P = (P;;); q represents the heat flux, and W
the electron energy. These equations constitute the usual balance
equations for charge, momentum and energy. The terms Q., Q.
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and Q. derive from the contribution of the collisional operator that
describes the interactions between the electrons and the lattice. The
electric field is related to the potential V and the density of donors
Np and acceptors N4, via the Poisson equation

(2.4) V. (eE)=e(Np — Ny —n)

(2.5) E=-VV

where ¢ denotes the dielectric constant. The equation of state of the
electron gas is

3 1
(2.6) W= §.nkBT +gmav - v
where kp is the Boltzmann constant and 7' the electron temperature.
Assuming the usual linear constitutive relations, the heat flux and
the stress tensor are given by

| B vy 0v; 2 o Ovg.
(2.8)_ 'P,J = nk‘BT(S,J — U (@ + ‘5:13;) + ’3‘#}02_‘: '_8-;:;6”

where k and p are thermal conductivity and kinematic viscosity,
respectively. In the model treated in [1] and [3] the viscous terms are
neglected (1 = 0). Following [2] we assume that thermal conductivity
and kinematic viscosity are given by

where p,0 is the low field mobility, 7y the lattice bulk temperature,
which is supposed to be constant, and & is a nondimensional constant
(which is zero in the inviscid model). An appropriate value of the
viscosity parameter i could be derived by determining the transport
coefficients from the kinetic equation. However the qualitative results
that we present do not depend on the particular value of i; therefore
we avoided this derivation and used some reasonable value for f, in
accordance with the Prandtl relation between thermal conductivity

and viscosity.
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Plane one dimensional flow.

In the sequel we shall not consider creation and recombination
effects and therefore we take Q, = 0. We are interested in one
dimensional solutions of the system (2.1-2.8), which have the form

n=n(z,t), v=(v(z,1),0,0), T=T(z,t), E= (E(z,t),0,0),
q-= ('Q(:l),t'), 03 O): (P')ll = nkBT + ﬁ(iL‘,t) 1 Qv - (va 0: 0) .
In this case system (2.1-2.8) reduces to

(1 + (nv), =0
(mnv); + (mnov? + nkpT + §) _ + enE = mQ,

1
(——mnv2 + §.nkBT) + [—;-n (5IcBT + m’uz) v+ pv + q]
t

2 2 z
+enFEv = Q.
(3.1) <
EE'x ZG(ND —-NA—nf)_
E=-V,
q = —kT,
4
L p_ 3” r
_ 0 _ 0
Where ()x = 5;, (‘)_t = (5‘{.

If 4 # 0 and k # 0 then there are seven field variables, n,v,T, E,V,q
and p. By introducing the vector field

U=(n,v,T,E,V,q,5),
equations (3.1) can be written in the form

0U | 10U _
’0_

U +A1l6—— B.

0
A ‘Ot T

The characteristic speeds are the solutions of the equation

(3.2) det(Al —2A% =0.



MATHEMATICAL ASPECTS OF HYDRODYNAMIC MODELS FOR,... 239

A simple calculation shows that
|det(A* — AA%)| = %ksmv — Al

therefore the only characteristic speed is A = v.

In the case i = 0 the number of unknowns reduces to six, because
7 = 0 and therefore A° and A' are 6 x 6 matrices. The solutions of the
characteristic equation are

*
/\1:’0, /\2,3=v:i:c,

where ¢* = \/kgT/m.
In the case k=0 and =0 it is ¢ = 0, .4° and A! are 5x 5
matrices and the eigenvalues are

Alzv, )\2,3:’0:’!:03,

where ¢, = \/(5/3)kpT/m is the usual sound speed for a polytropic
gas with v = 5/3. :

The results of the analysis of the last two cases are also
mentioned in Ref. [3]. Whereas the sound speed ¢, has a precise and
well known physical meaning, the role of the velocity c* is obscure. As
we shall see, the time independent equations become singular when v
approaches c*, in the case k # 0, 4 = 0. This singularity is unphysical
and it disappears when x # 0, or x and k are both zero. This result
is general because the eigenvalues do not depend on B and therefore
they are the same for any choice of the collisional term Q., Q..

4. Non-dimensional equations.

It is useful to introduce non dimensional variables, through the
following scale transformations

- [k
r=LX, n=nav, v= -—I?—Tow, T ="T,0, E.—_.kﬂo_n,
m el
kg To

k -
¢, q=\—=ToksTor(, p=nkpTov,
[ m

where L is a characteristic length and 7 a characteristic electron
density in the device.

V=
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We are interested in time independent solutions. In the new
variables the stationary equations (3.1) become

[ (vw) =0
(V.w2+u0+¢)'+un= Cy

’
[%V(Sﬁ—f-wz)w-}-zbw—#(] + vwn = C.

(4.1) S =c¢(vo—w)
n=—¢
¢ =—koud
(Y= —povw
where pro |
c1 = 5?5—7%’ 0= ?;irg) mkp Ty, po = g—ko/]:
vo=w(e) =z (Vo - Na), Q="22T0g,

_T_lk'BTo kp ;o d
Qe = L Vm To G, T dX

We do not specify here the form of the collisional terms, but we
assume only that C, and C. are some given continuous function of w
and 6. The first equation is integrated immediately, giving

(4.2) wy = J,

J being a constant determined by the initial or boundary conditions.
We assume that J > 0 so that w is always strictly positive. System
(4.1) can be written as a set of three equations of second order, by
eliminating the variables ¢, 7,

,

6
pow” =wuw' + 6 — Ew' + %(w/!)_z —¢' + K(w,0)

k
(4.3) $ kot :gwﬁ' + :Uqw’O' + 0w’ — po(w')? + H(w,0)

J
! /, o —— —
\ v=-a <V0 w)
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where K(w,0) = —wC,/J, H(w,8) = (w*C, —wC.)/J. For po = 0 the first
equation reduces to a first order equation and system (4.3) becomes
r 0 / / / e
S-w)w =0' —¢' + K(w,0)
" 3 ' kO 1t !
(4.4) < kof =§w0 +—w 0"+ 6w’ + H(w, )

J
b // T e — —
L o= <1/.0 w )

When w? = 6, the coefficient of v’ in the first equation vanishes and
the system becomes singular. In the physical variables this condition
corresponds to v = c*.

A qualitative analysis of systems (4.3) and (4.4) near the surface
0 = w? was performed by the authors (see Ref. [4]).

5. The Baccarani-Wordeman model.

We apply our results to the model described in Ref. [1]. The -
expressions for the collisional terms are

eT
= - nv
Q mpnoTo

- 3 m pno To 3 pno TTy \~'
Q‘“_<W_2"kBT°>(2 e T+2ev§~’“BT+TO

From the non-dimensional form of the collisional terms we obtain
90 wi(f%—1)— (fw)?
2ky w2 (0+ 1)+ 302

K(w,0) = 5%—011; H(w,0) =

We used the following numerical values of the parameters: silicon
effective mass, m = 0. 26m.., where m, is the electron rest mass; silicon
dielectric constant: ¢, = 11.7 ; mobility pno = 1400cm?As-V), saturation
velocity v, = 107cm/s (see [1]), lattice temperature To = 300°K,
characterlstlc electron density # = 2 x 10%cm™3, characterlstlc length
L =0.1pm.

An explicit solution of system (4.1), for constant vy, 1s obtained
by assuming that all quantities but ¢ are constant. One exact solution
is the following

' G =1%e=0, v = 1.
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The other equations become

vow, =J,
3J
VeTle = — 5];7—(;9*’
3J 3 30, — 3 + w?
""—0* ¥ — o7 VsUsx{Us Yw? e X .
P T ) Sy e i T

From these equations we obtain

2 3

2 2 2\ . — v
8* (w w*)“ws: e = ,Qkow*o*.

s —

If w, > wy, i.e. if the velocity is smaller than the saturation speed, we
obtain

Wy
3w, W,
(51) e = — 2](70 \/m:
3w, w

: X + costante.

9 ~ 2k Vw2 — w2

Such a solution has a precise physical meaning. It corresponds to the
following boundary conditions: assign values of the electric potential,
set the electron density equal to the doping density and impose zero
heat flux.

Let us consider this solution as a solution of an initial value
problem. If we perturb the initial data, then the perturbation will be
amplified by a factor that depends exponentially on the product of
the device length and the eigenvalues of the matrix that defines the
linearised system. The error amplification factor depends on the real
part of the eigenvalues ); and is given by exp(m?x RA: L), where L is

the interval of integration. Let us linearise system (4.3) around the
solution (5.1). The characteristic equation becomes

5.2) ) ;
' 3
2 _ il W S W
HoA WA + w*)‘ T 0. A T Wy A
9 63w 3 9 w?
—M, + — x ¥ koA? — Sw, ) — — s 0(=0
@ D302 N T3 T kw6, 1 1) 1 362
Clili 0 /\2
Wy
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Fig. 1 - Dispersion relation for the linear problem. Real part of AL versus
got;}ingodle{}sity (in units 2 x 10'°cm=3). Inviscid model. Applied potential:
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Fig. 2 - Dispersion relation for the linear problem. Real part of AL

versus doping density (in units 2 x 10'5cm=3). Viscous model with viscosity
parameter i = 1. Applied potential: AV =0.1V.

! i




244 ARMANDO MAJORANA - GIOVANNI RUSSO

"55 1 | | | 3
0 20 40 60- 80- ..
Fig. 3 - Dispersion relation for the linear problem. Real part of AL versus
(zisot;}inglt‘i/gnsity (in units 2 x 10'%cm™3). Inviscid model. Applied potential:
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Fig. 4 - Dispersion relation for the linear problem. Real part of AL

versus doping density (in units 2 x 10!%ecm~3). Viscous model with viscosity
parameter i = 1. Applied potential: AV = 1V.
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The characteristic equation corresponding to system (4.4) is
obtained from (5.2) simply by setting uo = 0. Let us study the
dependence of the real part of the solutions of the characteristic
equations on the doping density, for typical values of the parameters.
Figure 1 shows the real part Az of A multiplies by L as a function
of the doping density Np — N4. The device length is 0.6ym and the
applied potential is 0.1V.

In Figure 1 we plot the solutions for system (4.4), and in Figure
2 we give the real parts of the eigenvalues corresponding to system
(4.3). In the first case there are 4 non zero eigenvalues (the fifth
eigenvalue is zero, because the electric potential does not appear
directly in the equations, but only through the electric field), while
in the second case there are 5 non zero eigenvalues. Note how two
branches collapse into one when the eigenvalues become complex.
The conditioning of the problem depends critically on the doping. For
small values of 1, the real parts of the eigenvalues are rather small,
and the initial value problem is rather well-conditioned. In inviscid
case an eigenvalue appears with negative real part and large absolute
value. This makes the numerical integration problem moderately
stiff. For high doping the real parts become large in absolute value,
and with both positive and negative sign. This makes the initial
value problem ill-conditioned, when integrating in both directions.

In Figure 2 and 3 we report the behavior of the eigenvalues
for an applied potential of 1V. The conditioning of the problem is
still bad for high doping. Such large eigenvalues make the numerical
treatment of the models very difficult, especially for high doping [3].
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