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SOME PROPERTIES OF SOLITON SOLUTIONS
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A generalization of the well known Zakharov system of ion-
acoustic waves (Langmuir solitons) has been obtained while studying
the coupling between shear-horizontal surface waves and Rayleigh
surface waves propagating on a structure made of a nonlinear elastic
substrate and a superimposed thin elastic film. We obtain thus a
nearly integrable system made of a nonlinear Schridinger equation
coupled to two wave equations for the secondary acoustic system.
Here we present essentially some comments and results of numerical
simulations (pure SH mode, coupled case, influence of dissipation in
the Rayleigh subsystem, collisions of solitons).

1. Introduction.

The problem consists in studying the possible propagation of
surface solitary waves, eventually solitons of the true surface-wave
type (amplitude decreasing in the substrate) in a structure made
of a nonlinear elastic isotropic substrate (half-space X, > 0) and
a superimposed linear elastic isotropic thin film, the latter being
perfectly bonded to the former (Figure 1). The nonlinearity originates
thus from the substrate while the dispersion is induced by the film
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which plays the role of a wave guide [15]. In the mathematical
description the thin film is reduced to an interface of vanishing
thickness which, however, still carries a mass density (hence inertia)
and membrane elasticity in agreement with a general continuum
approach [2]. A general surface wave problem in this structure
involves both an SH (shear horizontal) elastic scalar component
(polarized along X3;) and a Rayleigh two-component displacement
polarized parallel to the so-called sagittal plane Ps [16], [19]. The
complete coupled nonlinear problem is a tedious one which is shown
to be tractable in several steps. First, in the linear approximation
an SH dispersive surface mode of the type of Murdoch [25], and a
classical (non dispersive) Rayleigh mode propagate independently of
one another as a consequence of the assumed isotropy of the materials.
At the next order, both modes couple through the nonlinearityy [17].
However, if the primary signal entered in the system through a
transducer is of the SH type and is O(¢), then the Rayleigh subsystem
will develop an O(c%) component. This nonlinear mutual coupling
[17] is neglected in the first instance where the pure nonlinear SH
mode is shown to be governed by a single cubic Schrédinger (NLS)
equation at the interface for modulated signals with slowly varying
envelope [7], [21]. Then the problem accounting for the nonlinear
coupling with the Rayleigh components is shown to be reducible to
the announced generalized Zakharov system [10], when the main
field still is of the SH type. Here essentially numerical simulations
are presented, further analytical and numerical results being found
in other works [8]-[9], [5]-[6]. '

thin elastic film

nonlinear elastic
substrate

Fig. 1 - Setting of the surface elastic - wave problem.
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2. Pure SH surface-wave problem.

In the simplified case, using the boundary condition provided by
the theory of material interfaces [2], we find that the initial mechanical
(two-space-dimensional) problem is governed by the following set of
equations rewritten in nondimensional units [7], [21]:

( B2Ust — (Use + Uyy) = B2A[(Ue®): + (Uy®)y]
X X for Xo=y>0,

(2.1) § Ust = Upe = Uy (1 + B2AD),
U=UatX,=y=0,

. U(.’B,y - +Oo>t‘) =0,

where & = U2 + U2, subscripts indicate space (¢ and y) and time
(t) differentiations, A is the nonlinearity parameter and g is the
dispersion parameter. In the absence of nonlinearity A = 0, the above
system yields Murdoch’s linear surface waves [25]; in the absence of
dispersion (zero left-handside in (2.1),), it yields Mozhaev’s nonlinear
surface waves [24], [4]. The full system, however, possesses all good
ingredients to exhibit sclitary waves of the surface-wave type (so
as to satisfy the last of (2.1)). This is proven analytically by using
the Whitham-Newell [1], [26] technique of treatment of nonlinear
dispersive small amplitude, almost monochromatic waves [8]-[21].
In the process, «waves action» conservation laws and «dispersive»
nonlinear dispersion relations are established for this type of surface
waves that could also be approached by using Whitham’s averaged-
Lagrangian technique [29] as modified by Hayes [12] to account
for a transverse modal behavior. The full analysis [21] is conducted
simultaneously in the bulk (y > 0) and at the interface (y = 0);
Combining then the two at the interface results in a single nonlinear
Schrédinger (NLS) equation for the envelope of complex amplitude a
for the SH mode (in reduced coordinates):

(2.2) ia; + page +qlal’a =0,

where p and ¢ are real and depend on the working regime (wq, ko)
of the carrier wave along the linear dispersion relation of Murdoch’s
waves. Explicitly,

fPwg — 2k
B2+ 2(wh — k3)’

1 3
(2.3) p(wo, ko) = 5&)6', g(wo, ko) = gAﬁ4wo



256 GERARD A. MAUGIN - HICHEM HADOUAJ - BORIS A. MALOMED

where w{ is the curvature of the linear dispersion relation. The NLS
equation (2.2) is exactly integrable [31] and admits bright and dark
envelope (true) solitons depending on the sign of the product pq as
is well known in nonlinear optics [3], [11]. If the nonlinear material
making up the substrate is known (e.g., LiNbO; [17] for which A > 0)
then this criterion allows one to select the thin-film material to
guarantee the existence of the desired stable surface solitary wave.
In .the present case with A >0, 1/2 < 82 < 1 (ilm of aluminium)
and $? < 1/2 (film of gold) provide stable bright and dark solitons,
respectively [21]. The analytical solutions thus obtained are used
as initial boundary value conditions in characteristic coordinates in
direct numerical simulations performed on the original (obviously
not exactly integrable) two-space dimension system (2.1). Explicit
and implicit numerical finite-difference schemes in three-dimensinal
Euclidean  space-time grids were used for this (see {9] for technical
details). The surface waves indeed propagate as solitary waves along
the X; = 2 direction with a nice exponential -decrease of amplitude
with depth (along X, = y), Figure 2. A lack of accurary in numerical

a b

il

4

L)
mld‘u, v

Fig. 2 - Propagation of a bright enevelope soliton in system (2.1): (a) true
signal at the interface, (b) decrease of amplitude |a|? with depth.

solutions in depth will show up at the interface sooner or later.
A predominance of nonlinear effects over dispersion may yield the
formation of surface shock waves after a typical steepening [9].
While (2.2) obviously exhibits a true solitons behaviour in soliton
interactions, the rather pure solitonic behavior of system (2.1), for
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small amplitudes, can only be checked numerically. This indeed
is practically the case as shown in Figure 3. which exhibit the
interaction of two (head-on) colliding unequal solitons in the SH
system at different depths in the substrate (fifty layers are accounted
for in the computation along depth); At this point it should be noted
that there is no difficulty to account for the viscosity in the pure SH
system and the subsequent alteration in (2.2).

3. Coupled SH-rayleigh problem.

In agreement with Section 1 the main displacement field O(e) is
the SH component, in which case the Rayleigh components are O(£2).
Considering slow-varying envelope solution for the SH component,
a long asymptotic evaluation [10] allows one to show that, after
integration along the transverse coordinate y, and appropriate scaling,
the whole problem is governed at y = 0 by the following system
of equations for the complex amplitude a of the SH mode and the
real fields n; and n, for which the components v and w of elastic
displacement along z and y, at y = 0, are longitudinal potentials
(n1 = vg, ny = w,), respectively (Figure 1)

ia; + zp £ 2)|al?a + 2a(arny + arng) = 0,
(31) (nl')tt - C%(nl")m: - nL('nl‘)a:a:t = _"I’L(IGP):L'Z')

(nz)tt - C%(nz’)m: - 77T(n2‘)a::ct = _/"T(lalz‘)xa:;

where viscosity has been introduced for the Rayleigh components only
(see above made remark); System (3.1), a nearly integrable system
only (in contrast to (2.2)), is a system which generalizes the system
of Zakharov [30], [13] for which A =0, ny =0, ar = pr =0, np =0,
that appears in ion-acoustic systems in plasmas (Langmuir solitons
for which a and n; pertains to the electric field and ion density,
respectively). This system has been extensively studied analytically.
The general system (3.1) obviously is richer and presents many
interesting features. Two of these are more particularly examined
below.
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Fig. 3 - Head - on collision of unequal envelope solitons of the surface wave
type in system (2.1): (a) 1st layer (top - interface), (b) 15th layer from top,
(¢) 25th layer from top, (d) 35th layer from top.

4. Dissipation-induced evolution of solitons.

We consider first the evolution of envelope solitary waves in
the SH-dispersive a-system of (3.1) under the influence of dissipation
(viscosities nz, and nr) in the nondispersive (n;,n2) Rayleigh subsystem.
The two are coupled through the coupling coefficients p; and pr.
In spite of its appearance, system (3.1) still conserve the number of
(SH) surface phonons (or wave action)

+o0
(4.1) N:/ |a|*dz.
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In the analytical treatment [5] which applies the balance-equation
analysis [14] to the slow dissipation-induced evolution of the exact
one-soliton solution of the Zakharov system (for the sake of simplicity
w = 0, pr = 0 in (3.1), but this is justified [10]) although this system is
not exactly integrale, three different scenarii of evolution are shown
to be possible: (i) adiabatic (slow) transformation of a moving subsonic
soliton into the stable quiescent one, (ii) complete adiabatic decay of
a transsonic soliton with a small amplitude, and (iii) coming of the
transsonic soliton with a large amplitude into

Fig. 4 - Dissipation - induced evolution of the exact one - soliton solution of
Zakharov’s system; abrupt split into three pulses in the n - system (large
wave action, large velocity): (a) |ul?, (b) —n.

a critical state, from which further adiabatic evolution is not possible.
In the latter case a numerical investigation of the further evolution
of the soliton is particularly enlightening. In a general case, it is
shown that it abruptly splits into the stable quiescent soliton, the
slowly decaying small-amplitude transsonic one, and a pair of left-
and right-running acoustic pulses slowly fading under the action of
the weak dissipation; This is exhibited in Figures 4 and 5. The
abrupt splitting seems to be a new type of inelastic process for a
soliton, induced by small perturbations (see the review in [14]). This
concludes our brief excursion in the evolution of one soliton in the
damped generalized Zakarov system.
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Fig. 5 - Dissipation - induced evolution of the exact one - soliton solution
of Zakharov’s system; rearrangement (perestroika) of the soliton in the
intermediate case (smaller values of wave action and velocity than in Figure
4).

5. Soliton-Soliton collision in the generalized zakharov sys-
tem.

As seen above the generalized Zakharov system (3.1), in the
absence of viscosity in the Rayleigh subsystem, admits both subsonic
and transsonic one-soliton solutions. The question naturally arises
of the interaction (collision) of such solitons (i.e., whether they are
indeed solitons), for instance in symmetric soliton-soliton collisions.
In the analytical study given elsewhere [6], the collision-induced
emission of acoustic waves (in the Rayleigh subsystem) was treated
for soliton velocities much larger than their amplitudes. In particular,
it was shown that the acoustic losses are exponentially small unless
the velocities are much larger than the characteristic sound velocity
(er) in the Rayleigh sybsystem. The numerical simulation of the
head-on soliton-soliton collision brings up two basic phenomena: (i)
the collision of subsonic solitons always lead to their fusion into a
breather, provided the system is sufficiently far from the integrable
limit (i.e., the NLS case), and (ii) the collision between transsonic
solitons gives rise to a multiple production of solitons (both subsonic
and transsonic) and the quasi-elastic character of the collision is
recovered in the limit of large velocities. This is illustrated in Figures
6, 7 and 8.
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6. Conclusion.

It appears that the initial, purely mechanical, surface-wave
problem considered yields, on the hand, a very interesting physical
application which may be of interest in signal processing (we have
a mechanical analog of light solitons guided by optical fibers and
expect the experimental device to be realized soon) and, on the

Fig. 6 - Collision - induced fusion of subsonic solitons into a breather with
acoustic emission in the Rayleigh subsystem: (a) |u|?, (b) n.

Fig. 7 - Collision of two transsonic soliton at moderate velocities : (a) |a|?,

(b) n.

other hand, a class of paradigmatic problems in soliton theory for
nearly integrable systems made of an exactly integrable equation
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Fig. 8 - comparison between the soliton - soliton collision for system (3.1)
close to the integrable NLS limit (a), and the collision of two transsonic
solitons at high velocities in the generalized Zakharov system (b).

coupled nonlinearly to one or two d’Alembert equations. The sine-
Gordon d’Alembert systems introduced previously by Maugin and
Pouget in elastic ferromagnets [22], elastic ferroelectrics of the
molecular group type [27], and more generally (and abstractly)
in oriented elastic solids [23] [28], belong to the same class. The
modified-boussinesq-d’Alembert system introduced recently by Maugin
and Cadet [20] in martensitic (shape-memory) alloys appears to be
even richer in so far as the variety of dynamical behaviors is concerned
(see works by C.I. Christov and G.A. Maugin).
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