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WAVE PROPAGATION
IN DISCRETE KINETIC THEORY

R. MONACO (Genova)

The paper is a review of shock wave propagation problems for inert
and chemically reacting gases in the framework of discrete velocity
models (Discrete Boltzmann Equation, DBE). The paper is divided
in two parts. The former deals with the formulation of shock wave
problems and with a review of results. The latter takes into account
open problems and addresses the reader to future lines of research.

1. Introduction.

The analysis of the structure of shock waves and of the existence
and stability of travelling shock waves is a classical topic both in
continuum fluid-dynamics and in kinetic theory of gases [1].

Shock waves can be also studied in the framework of the Euler and
Navier-Stokes description of fluid-dynamics. This latter mathematical
model certainly provides accurate description of the flow conditions in
the case of weak shock waves and small Knudsen numbers. On the
other hand for strong shock waves and/or large Knudsen numbers the
description provided by the Boltzmann equation appears to be more
accurate if compared with experimental observations (see ref.[1] for
a wide bibliography on this topic).
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One can then state that the quantitative and qualitative analysis
of shock waves is certainly an interesting field of application of the
DBE [2]. In fact, as shown in ref.[3], this model provides an accurate
description, both at a qualitative and quantitative level.

In particular, this paper tries hopefully to provide a unified
review of the various mathematical and physical results available
in the literature. The paper will also indicate the mathematical
problems which are still open and the main difficulties to be tackled
to deal with them, so that the reader can find indications for future
research activities in the field.

2. Formulation of the Mathematical Problems.

The general structure of the discrete Boltzmann equation is here
reported for sake of completeness and for simplicity of presentation

(1) (g—{—#v,wvx) Ni= PN +IPN] , i=1,...,n
(2) N ={N;(t,x)}: [0,T]xR*— R} , d=1,2,3
where v; , (¢ = 1,...,n) denote the admissible velocities, N; the

number densities joined to each velocity and J& and J® are the
collision operators for the binary and triple collisions respectively. The
mathematical expression of such operators is related to the specific
model which has been chosen, namely on the number of admissible
velocities; nevertheless the operators are always of quadratic and
cubic type, respectively. '

If the gas includes different components which can react
chemically, then to the r.h.s. of Eq.(1) source terms S;[N] and sink
terms D;[N] should be added. For sake of simplicity in the analysis
which follows we will omit these terms.

We recall briefly the principal physical mathematical properties
of Eq.(1). When the number densities are equilibrium Maxwellian
densities, which will be denoted by A;, then the collision operators
are equal to zero '

(3) TN =IO =0 i=1,...,n
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Moreover a vector & € IR” with components ®;, functions of the
discretized velocities, is a collisional invariant if and only if the
following scalar product satisfies the property

n
(4) <®J0>=3"9JV =0 , s=23.
i=1
The space of collisional invariants, which is a linear subspace of IR",
is denoted by M and its dimension by §.
Further on one can define the hydrodynamical moments, i.e. the
macroscopic variables, by

(5) W(t,x) =< @O N> | y=1,....6

where &) denotes each independent collisional invariant in the space
M. From property (4) it follows that a discrete velocity model of the
Boltzmann equation admits a number § of independent conservation
equations which are obtained by multiplying Eq.(1) by *@,(X) and
summing over i. These equations can be written as

W,

(6) 5 +F[N]j=0 , x=1,...,6
where

T n

(7) FNI =" 0Mv; . VN,

i=1

Analogously to continuum kinetic theory, these equations in
general do not generate a closed system of equations in the unknown
macroscopic variables W,. . '

The thermodynamical equilibrium state is determined by the
well-known [2] H-theorem which assures the equivalence between
the two following statements

(8) : logﬁ:{log]vl,...,logﬁn}e./\/t

JON]=0 , s=2,3
Then from (8), using property (4), the explicit expression of Maxwel-
lians can be determined, i.e.

5
9) N; = exp [Z CXQEX)»J , i=1,...,n
X=1
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where the coefficients ¢, = c,(¢,x) are called the Maxwellian parame-
ters. Gatignol [2] has proved that the map

(10) e — Wy

is a one-to—one map, so that the Maxwellians can be expressed in
terms of the hydrodynamical moments calculated in the equilibrium
state.

Finally let us recall that the conservation equations (6), when
are computed in the equilibrium state, become a closed system of
equations which, analogously to continuum Kkinetic theory, are called
Euler equations. These equations represent the time-space evolution
of the macroscopic quantities in the equilibrium state.

In spite of the relevance of the problem, dealt with in this review,
mathematical results for shock waves are available only for some
special models: the Broadwell model [2] for both a simple gas (six
admissible velocities) and a binary gas mixture (twelve admissible
velocities), Cabannes’ 14—velocity model [2] and the planar 6-velocity
models [3] with triple collisions. Certainly, results for general models
of the discrete Boltzmann equation would be desired, however several
mathematical difficulties are still waiting to be solved.

Having in mind Eqgs.(1)(10), we have all tools to provide the
mathematical descriptions of the shock wave problems which will be
dealt with and reviewed in this paper:

1) Existence of shock profiles,
2) Stability of shock profiles,

3) Onset and formation of shock waves.

Since the shock wave problems studied in this paper are all in
one space dimension, in what follows we will consider

z€IR and N; = Ni(t,z) .

The first problem, i.e. existence of shock profiles, consists in
proving the existence of shock solutions

(11) Ni(z — Bt)
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travelling with constant velocity 3 and linking, asymptotically in
space, two constant Maxwellian distributions

(12) ]\Af,-_ = Ni(z — —o0) , N = Ni(z — +00) .

The two Maxwellians are not independent and need to be
expressed one in terms of the other. This is possible using conservation
equations (6) formally integrated between z — —o0 and z — 4+00. Such
relations, obtained at a microscopic level, can be written as

(13) Nf = NH(N;)
so that one can determine the map
(14) {ef}— {ex}

between the Maxwellian parameters characterizing the equilibrium
states at +0o0 and at —oo, respectively. Recalling now the map (10),
relation (14) can be transferred at a macroscopic level by the new
map

(15) {pt, %, Tt} — (57,87, 77}

which links mass densities p, mean velocities © and temperatures
T of the two equilibrium states. The relations (15), in analogy with
those of continuum theory, are generally called Rankine-Hugoniot
conditions [1].

After these preliminar calculations existence of shock profiles for
the DBE can be achieved by the following investigations

— Compatibility for each 8 of Rankine-Hugoniot conditions (15) with
the Euler equations, genuine nonlinearity and strict hyperbohc1ty
of these equations

— Existence and uniqueness of solutions of type (11) for equation
(1) with limit conditions (12).

This last step consists essentially in proving the existence of a
trajectory between z — —oo and z — +o0, linking two stable points.
The existence is defined global if it is obtained for all values of 3,



270 R. MONACO

namely for |3| spanning from zero, which corresponds to
{t,a%, T}y = {507,173,

to the maximum value of |3|, which corresponds to @+ = 0. The
discontinuity at z — 8t = 0 is then called shock wave.

Various details of this problem have been studied by several
authors. Following the pioneer work by Broadwell [4], Gatignol [5] and
Cabannes [6] have studied several aspects related to the formulation of
the Rankine-Hugoniot relations for a simple monoatomic gas. Gatignol
has also provided analytical solutions generalizing the original results
by Broadwell. Caflisch [7], starting from Gatignol’s paper [5], has
analysed the existence of shock profiles for the Broadwell model
and the gap between these profiles and the ones described by the
Navier-Stokes equation.

Methodological aspects are dealt with in papers [8-12] which
mainly refer to mathematical aspects related to the analysis of
existence of shock profiles for general models of the DBE either with
binary collisions only or with both binary and triple collisions.

The problem of computation of shock profiles for a binary gas
mixture has been dealt with in papers [13-16] which refer all to the
2x6—Broadwell model [2]. In particular papers [13,14] provide suitable
comparisons with profiles obtained by other authors [17,18]. These
comparisons show a good agreement between the results predicted
by discrete kinetic theory and those obtained experimentally, or
theoretically on the basis of linearized models of the full Boltzmann
equation, so that one can say that shock—wave problems have been a
good validation ground to test the DBE models.

Recently computation of shock profiles for binary mixtures, with
both binary and triple collisions between particles, has been performed
in paper [19].

Moreover exact particular shock—wave solutions have been
obtained, essentially with a technique proposed by Cornille, in several
papers: in [20] for the Broadwell model in one dimension, in [21]
for a six planar velocity model with ternary collisions in one—space
dimension, in [22] for the Broadwell model in two dimensions, in [23]
for the same model in three dimensions, and finally in [24] for the
cubic 14-velocity model and the hypercubic 24—velocity model in one
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dimension.

The analysis of the stability of shock profiles essentially consists
in the study of the qualitative behaviour of solutions referred to the
perturbation of a travelling wave

(16) Ni(z — Bt) + pi(z)

where N;(z — ft) is a steady shock profile and ¢; a small perturbation.
The only two papers where it is possible to find original contributions
to this topic are due to Kawashima and Matzumura [25] and to
Caflisch and Tai Ping Liu [26]. Both papers deal with the six—velocity
Broadwell model for a simple gas.

The analysis of the third topic, i.e. onset and formation of shock.
waves, consists in the analysis of the initial value problem for Eq.(1)
with initial conditions

| ﬁ{' , ifz2<0
(17) Nio =

Nt , ifz>0

where N and N;* are the Maxwellian densities defined in (12).
Then one has to verify whether for ¢t — oo the solution tends to the
steady solution (11), which is consistent with the Rankine-Hugoniot
conditions. : "

Such a problem has been studied in paper [27] both for the
Broadwell model and for binary gas mixtures with disparate masses,
represented by a 2x6-Broadwell model [3]. In paper [27], at least on
a numerical ground, the trend, for ¢ — oo, to the steady shock solution
has been shown. An analogous numerical experiment has been also
carried on (see ref.[19]) for a binary gas mixture represented by the
six planar velocity model with triple collisions [8].

Before ending this section it is worthwhile mentioning that
shock—-wave problems for gases admitting chemical reactions have
been studied as well in discrete kinetic theory. These results deal
with the onset and formation problem for a diatomic gas undergoing
chemical dissociation. The effect of the reactions on the shock—wave
onset has been investigated via numerical simulations in papers
[28,29].
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Moreover exact shock-wave solutions [30-32] for particular
models admitting various reversible and irreversible reactions have
been recently performed following Cornille’s technique.

3. Discussion and Open Problems.

It has been shown, through the development of the content
of this review, that, despite the relevance of the problem, several
interesting and relevant aspects are left open. These open problems
can be regarded as suitable fields for future research activity.

Keeping this in mind, let us first examine the qualitative aspects
of the analysis of the problem in one space dimension. The proof
of existence of shock profiles needs first the proof of existence of
Euler solutions (strict hyperbolicity and genuine nonlinearity of the
Euler equations and uniqueness for each 8 of the solution to the
Rankine-Hugoniot equations), then one can deal with the direct proof
of existence of shock profiles.

The proofs of the first step are necessary, but not sufficient,
conditions to deal with the proof of the second step. The first step,
after the paper by Kawashima and Bellomo [9] can be regarded
solved at least for a discrete velocity model with only one velocity
modulus. The same technique can hopefully solve the same problem
for more general discrete models of the Boltzmann equation.

On the other hand, we have seen that very little is known about
the second step. In fact the few results available in the literature
refer to the Broadwell model. Generalizing what is known for the
Broadwell model to more general discrete velocity models would
certainly be of great interest.

This goal could be realized at least for weak shock waves. In
this case one can use mathematical results which are known for the
Navier-Stokes model [33,34]. Then it may be possible to show that for
weak shock waves, the profiles described by the discrete Boltzmann
équation remain close to the ones predicted by the Navier-Stokes
equation. This may require, as already observed in [10], structural
assumptions on the discrete velocity models.

Being aware of the fact that the above stated conjectures are
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still at the stage of speculations without useful ideas towards the
solution of the problem, we need mentioning that a similar result is
proved for the full Boltzmann equation by Caflisch and Nicolaenko
[35].

All speculations presented in this review, refers to problems in
one space dimension. Problems in two or three space dimensions,
even if of great interest in fluid-dynamics, are not dealt with, at
present, in the pertinent literature, apart from the aforementioned
papers by Cornille. This aspect of the problem certainly deserves
future research activity.

Acknowledgements.

This paper has been partially supported by MURST and CNR-
GNFM.

REFERENCES

[1] Kogan M, Rarefied Gas Dynamics, Plenum Press, New York, 1969.

[2] Gatignol R., Théorie Cinétique des Gaz a Répartition Discréte des
Vitesses, Lecture Notes in Physics No0.36, Springer—Verlag, Berlin, New
York, 1975.

[3] Monaco R., Preziosi L., Fluid Dynamic Applications of the Discrete
Boltzmann Equation, World Scientific, Singapore, London, 1991.

[4] Broadwell J., Shock structure in a simple discrete velocity gas, Phys.
Fluids, 7, 1964, p.1243.

[6] Gatignol R., Kinetic theory for a discrete velocity gas and application
to the shock structure, Phys. Fluids, 18, 1975, p.153.

[6] Cabannes H., Etude de la propagation des ondes dans un gaz a
quatorze vitesses, J. de Mecanique, 14, 1975, p.705.

[7] Caflisch R., Navier-Stokes and Boltzmann shock profiles for a model of
gasdynamics, Comm. Pure Appl. Math., 82, 1979, p.521.

[8] Bellomo N., Longo E., Shock profiles in one dimension by the discrete
Boltzmann equation with multiple collisions, in Waves and Stability in
Continuous Media, Ed. S. Rionero, World Scientific, London, Singapore,
1991, p.22.

[9] Kawashima S., Bellomo N., On the Euler equations arising in discrete
kinetic theory, in Advances in Kinetic Theory and Continuum Mechanics,



274 R. MONACO

Eds. R. Gatignol and Soubbaramayer, Springer—Verlag, Berlin, 1991,
p.73.

[10] Kawashima S., Asymptotic behaviour of solutions to the discrete
Boltzmann equation, in Discrete Models of Fluid-Dynamics, Ed. A.
Alves, World Scientific, London, Singapore, p. 35.

[11] Bellomo N., Bonzani 1., Nonlinear shock waves by the discrete Boltzmann
equation, in Proc. First Int. Conf. Shock Wave Propagation, Ed. E.
Cohen, SIAM, Philadelphia, to appear in 1991.

[12] Bonzani I., Bellomo N., Mathematical aspects of shock wave phenomena
by the discrete Boltzmann equation, in Nonlinear and Dissipative
Waves, Ed. D. Fusco, Pitmann, London, to appear in 1991.

[13] Monaco R., Shock wave propagation in gas mixtures by a discrete
velocity model of the Boltzmann equation, Acta Mechanica, 55, 1985,
p.239.

[14] Monaco R., On the shock wave structure in binary gas mixtures for a
gas represented by a discrete velocity model, in Rarefied Gas Dynamics,
Eds. V. Boffi and C. Cercignani, Teubner-Verlag, Stuttgart, Vol.1, 1986,
p.245.

[15] Platkowski T., Shock wave structure in a binary mixture of Broadwell
discrete velocity gases, Mech. Res. Comm., 14, 1987, p.347.

[16] Platkowski T., Shock wave profiles for discrete velocity models of
mixtures, in Discrete Kinetic Theory, Lattice Gas Dynamics and
Foundations of Hydrodynamics, Ed. R. Monaco, World Scientific,
Singapore, London, 1989, p.248.

[17] Hamel B., Disparate mass mixture flows, in Rarefied Gas Dynamics,
Ed. J. Potter, ATIAA, New York, 1977, p.171.

[18] Sirovich L., Goldman E., Normal shock structure in a binary gas, in
Rarefied Gas Dynamics, Eds. L. Trilling and H. Wachman, Academic
Press, New York, 1969, p.407.

[19] Pandolfi Bianchi M., Modelling and nonlinear shock waves for binary
gas mixtures by the discrete Boltzmann equation with multiple collisions,
Transp. Theory Statist. Phys., to appear in 1991.

[20] Cornille H., Exact 1+ 1 dimensional solutions of the discrete velocity
Broadwell-Boltzmann model, Phys. Letters A, 125, 1987, p.253.

[21] Cornille H., Exact solutions for discrete kinetic models with ternary
collisions, J. Math. Phys., 29, 1988, p.1667.

[22] Cornille H., Positive (2+1)-dimensional exact shock waves solutions to
the Broadwell model, J. Math. Phys., 80, 1989, p.789.

[23] Cornille H., 2D and 3D exact shock wave solutions with specular
reflection to the discrete models, J. Phys. A: Math. Gen., 22, 1989,
p.4787.

[24] Cornille H., Shock waves for the two speeds 8V;, 14V; and 24V;
discrete Boltzmann models with temperature, in Discrete Models of



WAVE PROPAGATION IN DISCRETE KINETIC THEORY 275

Fluid Dynamics, Ed. A.S. Alves, World Scientific, London, Singapore,
1991, p.131.

[25] Kawashima S., Matzumura A., Asymptotic stability of travelling wave
solution of systems for one dimensional gas motion, Comm. Math.
Phys., 101, 1985, p.97.

[26] Caflisch R., Tai Ping Liu, Stability of shock waves for the Broadwell
model, Comm. Math. Phys., 114, 1988, p.103.

[27] Monaco R., Pandolfi Bianchi M., Platkowski T., Shock-wave formation
by the discrete Boltzmann equation for binary gas mixtures, Acta
Mechanica, 84, 1990, p.175.

[28] Monaco R., Pandolfi Bianchi M., Shock-wave onset with chemical
dissociation by the discrete Boltzmann equation, in Rarefied Gas
Dynamics, Ed. A.E. Beylich, VCH-Verlag, Weinheim, New York, 1991,
p.862. .

[29] Monaco R., Pandolfi Bianchi M., Un problema di propagazione ondosa
per gas chimicamente reagenti in teoria cinetica discreta, Aerotecnica,
to appear in 1992,

[30] Monaco R., Platkowski T., Exact solutions of a discrete velocity model
of a gas with molecules dissociation, Engineering Trans., 2, to appear
in 1991. _

[31] Rossani A., Monaco R., Soliton—type solutions of a discrete model of
the Boltzmann equation for a mixture of reacting gases, Ann. Univ.
Ferrara sez.VII Sci. Mat., XXXVII, to appear in 1991,

[32] Rossani A., Polysoliton solutions for plane discrete velocity models of a
gas with chemical reactions, these Proceedings, 1991.

[33] Pego R., Stable viscosities and shock profiles for systems of conservation
laws, Trans. Amer. Math. Soc., 282, 1984, p.749.

[34] Maida A., Pego R.L., Stable viscosity matrices for systems of conservation
laws, J. Diff. Equat., 56, 1985, p.229.

[35] Caflisch R., Nicolaenko B., Shock profile solutions of the Boltzmann
equation, Comm. Math. Phys., 86, 1982, p.161.

Department of Mathematics
University of Genova
Via L.B. Alberti 4, 16132 Genova (Italy)



