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ON THE LYAPUNOYV STABILITY
OF A PLANE PARALLEL CONVECTIVE
FLOW OF A BINARY MIXTURE

G. MULONE (Catania)

The nonlinear stability of plane parallel convective flows of a binary
fluid mixture in the Oberbeck-Boussinesq scheme is studied in the
stress-free boundary case. Nonlinear stability conditions independent
of Reynolds number are proved.

1; Introduction.

In recent papers [1,2] the Lyapunov direct method has been used
to study the nonlinear conditional stability of parallel shear flows
and of plane parallel convective flows of a homogeneous fluid.

Here, we generalize the results obtained in [2] to a binary
fluid mixture in the Oberbeck-Boussinesq scheme, in the stress-free
boundary case.

We consider Couette and Poiseuille flows of a mixture: (a) heated
from below and salty from above, (b) heated from above and salty
below, (c) heated and salty below. The case heated and salty from
above is obatined by exchanging the roles of the Rayleigh number
R.? for heat and the Rayleigh number C? for solute. Then we set the
linear stability problem and show a Squire theorem: we prove that
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the three-dimensional problem is equivalent to a two-dimensional one
at a smaller Reynolds number R.

Then we study nonlinear stability. We show that the classical
energy method gives nonlinear stability conditions which depend on
the Reynolds number.

In order to prove a nonlinear stability condition which do not
depend on the Reynolds number, following the guidelines given in
[3-8]1, we introduce a new Lyapunov function and prove nonlinear
stability conditions which are independent on the Reynolds number.

2. Basic equations.

Let us consider a layer of a binary fluid mixture in the Oberbeck-
Boussinesq scheme, bounded by two horizontal parallel planes. Let
d> 0,0 = IR*x(—d/2,d/2) and Ozy= be a cartesian frame of reference
with unit vectors i, j, k respectively. Let us assume that the layer is
parallel to the plane zy.

The stationary Oberbeck-Boussinesq equations for a fluid mixture
with equation of state

(21) p= po[l -— aT(T — To') + ac(C - Cof)]
are:
(U-VU= —vl;i+[1—aT(T—To-)

+ ac(C — Cy)lg + vAU

(2.2) { v.U=0 in Q4
U .VT = kr AT

(| U-VC =kcAC

where U,T,C and p; are the velocity, temperature, concentration
and pressure fields; po,7y,Co are reference density, temperature
and concentration, respectively; ar and «ac are volume expansion
coefficients, v is the kinematic viscosity, k7 and k¢ are the thermal
and solute diffusivity coefficients and g = —gk is the acceleration of
gravity; finally V is the nabla operator and A is the three-dimensional
laplacian.
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We shall assume the following boundary conditions:

‘ d . d .
U(z, y, —§) =-Vi U(z, y, —2-) =Vi

d d
{ T@y-5)=T1  T@yz) =T (@yeR

d d
4 C(m)y,—’é") = Cl C(-’B,y, '2') = CZ

where V,T1,7,,C, and C,, are assigned real constants.

Let us consider a basic laminar solution m, = (U,T,C, py) of the

boundary value problem (2.2) - (2.3).

The non-dimensional equations which govern the evolution

disturbance (u, 9, v,p) of the basic motion m, are:

(2.4)

(u; + RU(2)uy + RwU'(2)i+u-Vu=-Vp
+ (Ra? — Cy)k + Au
{ V:u=0
PT(19¢+RU(Z)19x+u-V19) = —R.u-kr +Ad
| Po(ve+ RU(2)7s +u-Vy) = —Cu ke + Ay,

in @ x (0,00), where Q; = IR? x (—-:‘12-, %:), with initial condition

(2.5)

u(:t:,y,z,O) = uo(:c,y, Z‘)
Iz, y,2,0) = do(2,y,2) (z,y,2) €

7(:”; Y, 2, 0) - 70(‘8; Y, Z‘)

and boundary conditions

(2.6)

1
u(m,y,:i:—;—,t) =0, 'ﬁ(m,y,i—é,ts) = 7(a:,y,:i:%,t) =0, t>0,

in the rigid-rigid case, and

(2.7)

1 1
Wz, 5,0 = 0, s(e,,%5,0) = 0. (2,9,%5,0) =0,

1
19(m,y,i-;—,t;) = 7(:::,y,:|:§,t‘) =0, t>0

in the stress-free boundary case.

The subscripts z, z and ¢ denote partial derivatives, the prime

denotes derivative with respect to z; ug,d,,7, are assigned regular
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fields with V - uy(x) =0, u = (u,v,w) and

U(z) = 2z for Couette flow,
~ | 1—-422 for Poiseuille flow.

The stability parameters in (2.4) are the Rayleigh numbers for heat
and solute and a Reynolds number R given by

_ gPrapd?

R _ 9Bz cd?
a4 vkr

2
! ¢ vke

and R = —U;—d, where 3, and 3, are the constant gradients of temperature

. . v : v
and concentration, respectively. Moreover Pr = — and Pc = -— are

ICT kC’
the Prandtl and Schmidt numbers,
T e (heated below) Ko = —k (salty below)
T=1k (heated above), ©~ 1k (salty above).

As is usual, we assume that the perturbations are periodic functions

of z and y of periods %—E, 7211, respectively, (a; > 0, a, > 0) and

denote by Q the periodicity cell Q = [O, 22} X [O, —2—71] X [ 1 l} and by

ay as 2’2
1 .
a = (a2 + a2)7 the wave number. Moreover we require the "average
velocity condition”.

3. The linear problem.

If we now assume that all the disturbances have a dependence
on z, y and ¢t of the form exp{i(az + fy) —iact} then the linearized
problem associated to (2.4) gives: '

( [D? - (a* + B%) —ia(RU — ¢)]Ju = RwU’ +iap
[D? — (@ + §%) —ia(RU — ¢)]v = iBp

[D? — (a® + %) — ia(RU — ¢)]w = Dp — Ra9 + Cy
i(ou + fv) + Dw =0

[D? = (a® + %) — iaPp(RU = ¢)]d = =R hyw

\ [D2 - (‘3‘2 + ﬁz) — taPc(RU - ¢)]y = —Chow

(3.1) 3
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d
where D = 77’
_ [—1 (heated below) _ [ =1 (salty below)
(32) b= {1 (heated above), he = {1 (salty above),

and now u,v,w,p,d,v are function of z.
These equations together with the boundary conditions

(3.3) u=v=w=9=97=0 at z:i%
or

define the three-dimensional linear stability problem (in the rigid-rigid
case and in the stress-free case, respectively).

We now wish to show that this three-dimensional problem can
be reduced, by means of Squire’s transformation, to an equivalent
two-dimensional problem.

For this purpose we let

att = au + P, ﬁ)zwl, p=p, J=19
(3.5) ¥=v, a=(+p%7, E=cg, _
Pr=Pr, Pc=P;, R=3R, R.=R., C=C.

The equations (3.1) are thereby reduced to the following form:
([D? - &* —i&(RU - &))i = RwU’ +1i
[D? — & —i&(RU — &))@ = Dp — R
(3.6) { iGi+ D=0

[D? — &% —iaPp(RU — &)]9 = =R hy
| [D? — & —iaPo(RU — &)7 = —Chy.

These equations together with the boundary conditions
(3.7) i=w=0=9=0  at z::i:-21—
or

(3.8) Di=z=w=9=9=0 at z::i:%—
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have the same mathematical structure as equations (3.1)-(3.4) with
B =v =0 and they thus define the equivalent two-dimensional
problem. From this it follows the Squire Theorem:

THEOREM 3.1. The three-dimensional problem (3.1)-(3.4) is
equivalent to the two-dimensional problem (3.6)-(3.8) at a smaller
Reynolds number.

4. Non-linear stability.

The nonlinear stability has been studied with the classical energy
method by Joseph [9]. He used the "energy” E(t)
_ li® + Pr|18])* + Pelivll’

(4.1) B(t) = 5 ,

with || - || the L3(©) - norm.
Denoting by

Rr = (B2 + Ra2+C?)}, Ap= o,
IRr
(4.2) » c
Ar. = g- A =R/

he showed that the basic flow is globally and monotonically stable if
(4.3) | IRZ < IRZ

where IR¢ is given by the maximum problem

RS ax (U'(2)Aru — 2AR, 0 + 2Ac7, w)
Re ~ M Va2 +[IVo[]Z +(IVyIIZ

(4.4)
where H is the space of "admissible functions” :

H = {u, 0, v regular fields, periodic in z and y,
V.u=0, satisfying (2.7) or (2.6) on z = +1,
0 < [[Vul|? + IVII* + |V]1? < oo}

Solving the maximum problem (4.4) with the method used by
Joseph for a homogeneous fluid [9-10], it is easy to prove that - for
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example in the Couette case with stress-free boundaries - we have

(4.5) IRe? = -24—77#.

The stability result (4.3) obtained in this way depend on the Reynolds
number in all cases: Couette flow, Poiseuille flow and different
boundary conditions.

In order to obtain stability conditions independent of the Reynolds
number R, in this section, we shall study the nonlinear stability
with the Lyapunov second method, using a Lyapunov functional
different from energy (4.1) according to the methods given in [3-8].
The Lyapunov function V is the sum of two terms V() and Vi(¢). V4
is a Lyapunov function for the linear stability problem and depends
on the essential variables w,(,6,v, [1,2], while Vi(¢) must dominate
the nonlinear terms.

The evolution equation of ¢( and w are obtained in the usual way,
[3-8]. '

First we give linear stability conditions with Lyapunov method.
For this, we consider the Lyapunov function

(4.6) Vo(t) = SIKIP + BollAwl® + 7o Prll6l|* + v1 PellvII*),

[N

where £,, 7, and v, are positive constants which will be chosen later.

The evolution equation of Vy(t) is:
Vo= R / U/(2)wy¢ O+ R / 8o 16Aw + 7,h0w] dO
Q Q

(4.7) - C/ [BoA17AW + y1kyw] dQ
Q
= [IVCI? + BollVAWI? + 7| VO1> + 71 IV71%].

By using the Schwarz inequality, from (4.7) we have:

: 1 7
(49 Vo< Rl - I9CIE - RaboD (- - 5 )
with
(4.9) m= 1< SX% U’ ()],
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(4.10) T = [(A18, Aw) + ooh(0, w)] — ar [(Ary, Aw) + o1k(y, w)],
(@11 D = [[VAu|f + o, |[V8]? + o1 |77,
Yo 71 C
Oo=—, 0O1=—=, 0p=—.
*Th TR TR
Defining
1 A
4.12 — = —
(4.12) R, =5 D
with

G = { w,0,v regular fields, periodic in z and y,
(413) 0<D < 00,w= Wz = Wpzz, =0

1
0=0. =000 =% ="Y22 = V222 =0 On 2= ii},
from (4.8) we deduce:

410 Vo Emijuyl) —|-1vcuz-—73aﬂo”(7f‘n_;>’

a

A simple calculation gives:

2‘,
(7) 721 s = 4(12-;;’" ) (heated below and salty above),

(i7) %= g7 (heated and salty below),

(ii7) 5 =0 (heated above and salty below).

e
Now we assume that
(4.15) Ra* <R,

(in the cases (i) and (i7)), from (4.14), by using the following well known
inequalities (Poincaré, Wirtinger, Young), after some manipulation we
get:

2

(4.16) Vo < —g: (1 - %) V, ()
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with ¢, = max(1, Pr,Pc) . Integrating this last inequality, it
follows

(4.17) V,(t) < Vi(0) exp{--’g (1 _ %—) 0.

So we have proved the
THEOREM 4.1. If (4.15) holds, with R? given by (4.12), then the

basic motion m, is linearly stable in the norm V,(t) for any Reynolds
number. |

Remark. We observe that the same result holds if the maximum
given by (4.12) is 0 (i.e. in the case (7i7)). In this case, it is sufficient

1 . . .
to put formally i 0 in the previous calculations.

c

Then we have the following linear stability results in the cases
(2), (it), (ii0):

(i7) gives a stability condition which holds for every Rayleigh
numbers (both for heat and solute) independent of the Reynolds
number, and this may physically be expected.

(i7) gives stability results for every Rayleigh number for solute
whenever

(4.18) Ra* < 657.511.

In this case we obtain a stability condition independent of Reynolds
number and we get a non-destabilizing effect of the concentration.
Now in the case of the motionless state of a mixture heated and salty
from below, Joseph [9,10] proved a stabilizing effect of concentration
on the onset of convection. Then a similar result may possibly be
expected also for parallel shear flows.

From (i) we deduce:

27wt
2 _
(4.19) R = i ra)
and we get the stability condition:
(4.20) Ra’+C? < 657511

for any Reynolds number R.
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‘In order to study the nonlinear stability, we introduce the
Lyapunov function

(4.21) V(t) = Vo(t) + bVA(?)
(b is a positive constant), with
1
(4.22) Vi(t) = -2-(||Vull2 +[|V(V x u)|?)

and write the evolution equation of V(t). To this end, following [2,
§4], we have:

(4.23) V(t) = I, — Dy +N, + bIy — bD; + bNy .
Defining
R
4.24 = ta
( E ) ‘ M Rc )

and following [2,§4] it is possible to choose & such that:

(4.25) bI, < Dy
where

1-M b
(4.26) Dy = ——Do+3D1.

Moreover, with the same arg'uments of [2,§4], and [6,§12], it is easy
to see that there exist two positive constants A and B, depending on
M and on the parameters of the basic motion, such that

(4.27) N, +bN, < AD;VY, BV <D,.

Then we have:

(4.28) V < —Dy(1 — AVE) < —BV(1 - AVH).

This last inequality implies the following nonlinear stability theorem.

THEOREM 4.2. Let V(0) < A~2 Assuming (4.18) or (4.20) in the
cases of a mixture heated and salty from below or heated from below
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and salty above, respectively, then the basic motion is nonlinearly
asymptotically stable:

(4.29) V(t) < V(0)exp{~ B[l — AV(0)]t}.

The proof follows from (4.28) by a recursive argument (cf. [61,7).
Moreover, by classical imbedding theorems, we have the following
corollary:

COROLLARY. In the hypotheses of Theorem 5.2 we have the
following pointwise (exponential) decay: ‘

sup lu(x,t)] -0 as t—o0.
IR*x[-1,1]

Remark. In the case of a mixture heated above and salty below,
the only condition V(0) < A~? assures the exponential stability.
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