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WAVE: SPE_EDS ‘IN RELATIVISTIC WARM PLASMAS
S. PENNISI (Catania)

A recently obtained warm plasma model is here considered and
- the speeds of propagation of the discontinuity waves are calculated.

These speeds, relative to the fluid, are 0, +1/7/15¢ , £1/3/5¢, £+/1/3,
~where ¢ is a smallness parameter invariantly related to temperature.
Explicit expressions are also shown for the eigenvectors.

1. Introduction.

Anile and I have recently proposed the following set of field
equations to describe warm plasmas (see refs [1,2])

Ou(hw®) =0
(1.1) Oo(hwwP 4 9%8) = ehFPw,

Oa(hw®wPw + 3w(@9PY) 4 SBT) = 2e(98 , FVK + hw(BE Ky )
where w® = V1 +¢e2u®, g*# = diag(-1,1,1,1) (the metric tensor),

heB — gaﬁ_ _*_ua,uﬁ_;

98 = he? K18 4 o9heB K(euP) 4 h(K + g(¢))e? (%haﬁ + uauﬁ> + —;)—he:”haﬁ-,
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S = 2he* /1 + e2(K + g(e))ul®hfV + ghasvl +e2K(*pf 4

+2he* KU ™) 4 4peS K (uPu) 4+ %hﬁ-”f))+

+he? [I; <‘g¢;2(h) + %> + é] (uulu? 4 ul@ Py,

g(¢) is a given function of ¢ whose expansion around ¢ = 0 is

1 1, 5 , 283 8
(1.2) g(f:)_.6— 3¢ +4.276 ~ 555¢ + 0(e®),

F°f ig the electromagnetic field tensor, d5(h) is an arbitrary function
of h, e is the electric charge, units are chosen so that the speed
of light ¢ = 1 and the particle mass m =1, while &, ¢, K, u®, K2,
K(>8) are the independent variables constrained only by u,u® = —1;
U K* = 0; uo K(*8) = 0; K(a8) = K(Ba), gapK(*#) = 0; so that we have
14 independent components.

I give here a direct proof of hyperbolicity of the field equations
(1.1), calculating also the speeds of propagation of the discontinuity
waves. This proof follows the general guidelines exposed in ref [3]
and is parallel to that relative to the case of relativistic extended
thermodynamics as exposed in ref [4].

2. proof of hyperbolicity.

A given system of equation of the form
N
(2.1) > ARV B = pt
B=1

in the N unknowns u, is hyperbolic in the time-like direction &, iff
the system

(2.2) Ca AFA6uP =0
in the unknowns §u2 and with

(23) 'd’a - ¢(Ca - /\fa‘); fafa = "1; faca = 0; Caca =1
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has real eigenvalues A and N linearly independent eingenvectors §u?
and moreover det £, A%* # 0 (ref [5]); A is the speed of propagation of
the discontinuity wave, relative to ¢&,.

Let us define ¢ = —p,u®; ¢o = hage? (from which ¢4 = puy + ¢q
and ¢,u® = 0) and use the expressions of w*, 924, Sefv reported
in sect. 1; we can express the system (2.1) corresponding to (1.1)
in the frame where u® = (1,0,0,0); ¢* = (0,¢1,0,0) and calculate the
coefficients in the reference state defined by K = 0, K* = 0, K{28) = ¢,
In this way the system splits into

. 7 3 3
(24)  ASK®=0; ) A;X=0; > By =0; Y B;Z =0

j=1 ji=1 j=1

where K2 = Kf{*B) 4 2K heB whose inverse are

~ 1. _ _
e?K = §Kg; KB = b _ %Kﬁh"ﬁ';

moreover
X = (6h+661—:f?, b, K'Y, §RY 4 6?2 +6K’33,6K’33,6u1,61{1>
Y7 = (8u?,6K2 8§K,3); ¥ = (6uP,6K3, 6K 3)
while A, A;j, B;; are explicit functions of ¢, A, ©, ¢!; I omit their
expressions for the sake of brevity.

We can now proceed to calculate the eigenvalues and the
corresponding eigenvectors from eqs. (2.4). To this purpose let us
consider the following three cases.

D) Solution of A = 0.

Itis ¢ = 0. The corresponding eigenvectors (6 K23; X7; Y7/; Z7) for the
system (2.4) are (1;07;07;0%); (0;0,0,0,0,1,0,0;07; 09); (0; A, A2, A3, A%, 0,
0,0;07;04); (0; BY, B2, B3, B%,0,0,0;0/; 0/ ); (0;07;C,C?,0;04); (0;07;07; C1,
C?,0) where (A, A%, A% A*) and (B!, B, B® B*%) are two independent
solutions of the system

(e*g + )X + h[(e*g +€%) —e(etg +€%)/(1 + e X? + 3he? X3
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———g-hssz‘* =0

[(3549 +52)\/1T5-2+ %56] X1 + h { [(364 +g +52)\/1-|"—€2+ 566] _
- [(3549 +eV1+e + éeﬁ] (1+ ezl)‘l} x?

+he?(3V/1 4 €2 + 2:2) X3 + %ha‘* ( da + %) X4 =0

while C! = —§53(3\/1 + €2 + 262); C? = 1+ e2(3e%g +€2) + %56.

II) Other solutions of det(B;j) = 0.

We have that the values ¢ such that det(B;;) = 0 are the above
considered ¢ = 0 and moreover the solutions of

- [1 +(ViTe-1)+vite (62 - %e‘*g) -

5 6 4,(4, 4, N7V [71
275 +3e <3e.g+§5 +1)] : 15+
+z (\/1+62~1) 155g 1+.62—§-1,76‘_1+

+ 4—5(649 + 62)] e%(¢")?;

When ¢ is sufficiently little the dominant parts in ¢ of these new
roots are

—?-qﬁls.

(2.5) == %

To each of these values ¢, @3 of ¢ the following eigenvectors
correspond (0;07; DJ(gok) 04), (0;07;07; Di(p1)) where Di(py) is the

independent solution of Z Bij(sok)DJ(gok) =0.

i=1
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IIT) Other solutions of det(A;;) = 0.

With long calculations we can obtain that the roots of det(A;;) =0
are the above considered ¢ = 0 and those of

(2.6) ap? + B (¢1)? + v(41)* = 0
where
28 ' 28 - 28
(2.7) o = ?510—#511&; ,8:—?510'{”‘611,8; y = 1_.5_512+€13,7

with &, 3,% continuous functions also in ¢ = 0.
Now the two roots of (2.6) can be expressed in the form

2 2P+ “2i2 —don (¢%)? and ¢* =

4

27 (¢1,)2
~BHVB? —day " T
By using the expressions (2.7) their dominant terms in ¢ are
©? = :9)1-(¢14)2 and ¢? = §52(¢1u)2 respectively. To each of these values ¢,
2, ¢3, 4 of ¢ it corresponds the eigenvector (0; £/ (py); 0/ ;07) where
3

E7(¢k) is the independent solution of ZA,-J- (pr) E'(pr) = 0. |
j=1
Summarizing the results , I have found from the system (2.4)

6 independent eigenvectors corresponding to =0

2 independent eigenvectors corresponding to ¢ = \/% dte

2 independent eigenvectors corresponding to ¢ = —4/ 1—75 Ple
V3

4 independent eigenvectors corresponding to o= :}:—3— Ple,

+ g¢1€.

It is obvious that ¢ = 0 has multiplicity 6, ¢ = :1;\/% ¢le have
multiplicity 2, while the remaining values of ¢ have multiplicity 1.
All these values of ¢ are such that

(2.8) ¢® = k(¢F¢,) with 0 < k < 1
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, 1—75— e?, %—, —g— ¢2. In the next section we shall see
that the corresponding eigenvalues are all real.

I want to conclude this section noticing that from det(p,A%4) = 0
it has followed the condition (2.8) for ¢ = —p,u® and ¢, = has¢”;
Therefore if det(é,4%%) = 0 we would have (¢, instead of ¢y)
(€ou™)? = kh®P¢ 85, 1.e. in the reference frame ¥ where u® = (1,0,0,0);
o = (£0,61,0,0) we would have (&)? = k(¢1)?; but &,£% = -1 =
—(€0)? + (&1)? from which (&)? = 1+ (¢1)? that substituted above gives
1 = (k- 1)(¢1)? against the fact that k —1 < 0. Consequently the

requirement det(¢,A%4) # 0 holds.

and precisely £k =0

3. The speeds of propagation of discontinuity waves.

~ Inserting the expression (2.3); in the definitions ¢ = —pou®;
$a = happ? we obtain

9= B(—Cat® + Meat®); ¢y = 2L = N+ ((ats® — Mqu®)?]
that substituted in (2.8) give
(3.1) FO) =[k+ (1= k)a?]A? + 2ab(k = DA = k(1 — k)b* =0

where o
a=u%q; b =u%(y; u* = al®+0(*+V*
from which u®u, = ~1 gives a? — b2 = 1+ VeV, > 0.
Now from (3.1) we have that —?— =k +k(1—-k) (-0 >0
(because 0 <k < 1), which assures that the roots of (3.1) are real.
Moreover we have )

f(1) = (1 —k)(a —b)? because a—»? >0 implies a # b;
it implies also a* — a%b? > 0 from which
(3.2) —a®<ab<a® and therefore f'(1)=2k+2(1 - k)(a® —ab) > 0.

Consequently the roots of (3.1) are smaller than 1 (the coefficient of
A2 is positive). Similarly we have

f(=1) = (1=k)(a+b)? >0 because a®—5?>0 implies a # —b;
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f/(=1) =2[k + (1 — k)(a® + ab)] < 0 because of (3.2);

consequently the roots of (3.1) are greater than -1. With the above
result this says us that every root A of (3.1) is such that |A| < 1, i.e.
the speeds of propagation of discontinuity waves do not exceed that
of light.

The roots of (3.1) become simplier in the case ¢, = u, because for

T, 13,
k=0, 7% 3 5¢
they are
/7 1 3
/\——O,i 1_5—6,:}:\/_5::}:\/;5.
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