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k-PARTICLE KINETIC EQUATIONS:
IN SEARCH OF THE NONEQUILIBRIUM ENTROPY

JACEK POLEWCZAK (New York)

Systematic development of various Liapunov functionals (gen-
eralizations of the H-—functions) in the kinetic theory is studied.
The functionals are monotone functions of time, whose stationary
points points determine the equilibria of the system governed by the
corresponding kinetic equation. The mathematical structure is general
enough to embrace kinetic equations for the N-—particle distribution
functions (the full hierarchy equations) as well as the kinetic equations
of the reduced description, i.e., the equations for the k—particle distri-
bution functions. In the case of the hierarchy of N equations (including
the exact hierarchy) the stationary points of the functionals are of the
same functional form as the k-—particle distribution functions in the
equilibrium statistical mechanics. For k=1 and the closure relation as
in the revised Enskog equation, the first member of the family becomes
the H-function found by Resibois [10]. As an application of the explicit
form of the Liapunov functionals various existence and stability results
for the corresponding kinetic equations are presented.

1. One-particle kinetic equations

Consider a gas composed of identical hard spheres of diameter
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a, i.e., with the potential interaction given by

L HS. N _ oo, forr<a

(1.1) o7(r) = {0, for r > a.

When two particles of equal mass collide, their velocities vy, v, take
postcollisional values

(1.2) v = vr— (6, v —va), vy = vy +ele, v — vg).

(-,+) is the inner product in R3, and ¢ is a vector along the line
‘passing through the centers of the spheres at the moment of impact,
ie.ceSt={ceR:|e|=1,(v; — vy, € >0}

Within the kinetic theory the state of fluid depends upon
(among other things) the one—particle distribution function fi(t,r1,v1)
representing at time ¢ the number density of particles at point r,
with velocity v;. The exact rate of change of f; is given by

0 Jf1
(13) 6{;1 + 18f (N*- 1)& /drzdvz lezfg(t 7’1,?)1,7’2,’02)

Kia2fs = / [6(r12 — ae) f — 8(r12 + ae) f2] (€, v1 — v3) de,
5
with 715 = r; — ry, and velocities in f} computed according (1.2). The
dens1ty of pairs of particles in collisional configurations is described
by the two-particle distribution function f,. The above equation is
the first of the infinity BBGKY-—hlerarchy for hard spheres.
In order for equation (1.3) to be operational one needs a closure
relation for f,. As usual, one defines the two-particle correlation
function Y by the following relation:

(1.4) fa(t,r1,v1,m2,09) = Y fi(t,r1,v1) fi(t, vz, v9).

- Various choices of Y define different kinetic equations known in the
literature. For Y = 1 (i.e., no velocity and configurational correlations)
and a = 0 one obtains the classical Boltzamnn equation. If fi>0isa
solution of the Boltzmann equation then

(15) | HB(t)://fl(t,Tl,Ulf)logfl(t,Tl,’Ul')d’l)ldrl
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is such that (the H-theorem) dH B/ dt < 0, with equality only when f;
is a local Maxwellian.

In the revised Enskog equation Y = YBEE [1] where YREE ig
the pair correlation function for a system, in which, at any time,
the only correlations are due to the excluded volume of the spheres.
In particular, there are no correlations between velocities in the
system. YAEE can be written explicitly in terms of the Mayer cluster
expansion (see [11], [9], and [2]).

For nonnegative solutions, f;, of the revised Enskog equation I
define (see [10], [7], and [8])

(1.6) Hree(t) = /fl log flydvldrl — (N - 1f)a2/(; I(s) ds,

where

21(t) = /dedvgdvldrl [fl.(t? ry — ac, vg)YR-EE(rl,rl — ae)
—fl (t, 1 - ac, Uz‘)YREE(Tl, r1 -+ le)] fl(t, r1, 1)1)(6, vy — ?)2).

Hrep(t) has the property

' | dHREE
(1.7) | i <0.

The functional Hrpr has the form Hg(t) + H,orr(t). Furthermore, one
can express Horr(t) exp11c1tly in terms of the Mayer graphs (see [5],
[9], and [2])

Hoorn(t) = (N — 15); o / dry - . / dryn(d)...n(®) V(1. b),

where V(1...k) is the sum of all irreducible Mayer graphs which
doubly connect k particles.

In contrast to Botzmann’s H-function, H reE(t) consists of two
parts: the kinetic part (Hg(t)) and the correlational part. H REE(1)
(modulo an additive constant) has a functional form of the equilibrium
(non—uniform) entropy for the infinity system of hard spheres.
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" The same functional form (see (1.6)) of the Liapunov functional
is retained for Y having the following form (see [8] and [9]):

(18) Y = Y(t, 7"1‘, V1, T2, V2 |Af1(t))

Form (1.8) also includes Y equal to the exact two—particle correlation
function. _

Here, for each fixed ¢ > 0, A indicates an operator, possibly
nonlinear, acting on f;, and | Afi(t) denotes the functional dependence
of Y on Afi(t) (typically A represents moments of fi; in the case of
the revised Enskog equation A represents the zeroth moment of fi).
The principal assumption is that A and |Afi(t) act in such a way
that Y is symmetric under the exchange of variables r,v; = r2,vs,
and that Y is nonegative for f; > 0.

I end this section with the theorem that utilizes the form of the
Liapunov functional in (1.6).

- EXISTENCE THEOREM ([9], [2]) Suppose that T > 0, Y is regular,
and fo > 0 satisfies

(19) //(1—}-’1]%—{—7’%-{-“ngol)fodvldﬁ = Cy < 0.
In addition, assume that there exists C...r(T) > 0 such that
(110) ‘ Hcorr(t) _>_, Ccorr > —00,

uniformly in t € [0,T). Then the_fe exists a mild solution fi(t,r1,v1)
such that limt__,0+ fl(t, 1, 'Ul) = fo(rl, ’Ul) a.e.in (7’1,'01).

2. The main construction for the hierarchy equations

For classical systems in equilibrium the entropy is defined by

2.1) sﬁne:_/.../PNlogdea)....d(i)-..d(N),

where (i) = (r;,v) and Py is the symmetric N-particle probability
density (N denotes the number of particles in the system).
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The use of the fine-grained entropy S;i,. is not adequate in
the above nonequilibrium situation. Indeed, by the Liouville theorem
(volume element in the phase space is invariant under time evolution),
one has

(2.2) d%Sfme =0, forall ¢>o0.

In other words, the fine—grained entropy becomes trivial in the above
nonequilibrium situation. I recall that in equilibrium the form of
Stine Was determined by two factors: (1) that an adiabatic process
cannot decrease the entropy, and (2) that the entropies of independent
systems are additive.

There are no generally accepted rules for defining the nonequi-
librium entropy. However, by analogy with equilibrium (see, for
example, [6]), one would like the entropy to satisfy similar conditions,
in particular, that of non-decrease, and also to be equal to the
equilibrium entropy when the ensemble is in equilibrium.

Finally, the concept of the nonequilibrium entropy has been
also influenced by the information’s theory negative entropy, which
measures loss of the information about the system with time evolution.
As T will show below, an analog of this, applied to the concept of
the reduced description given by the k—particle distribution function
P(k> J Pnd(k+1)---d(N), for 1 < k < N, is very revealing.

The Liouville equation can be transformed into equivalent system
of N equation for P( ) Integration with respect to the positions and
velocities (r;,v;) of N — k particles, for k = 1,..., N and using the laws
of elastic collisions yields

OPY) & PP

ot +, lvz or;

1=

= B, (PFT)) =

- -y [ [ -

i=1 "RexS?

where S?, = {e: ¢ = 1, (¢,u; —w) > 0} and velocities in PHY are
computed according to the hard-spheres collision laws. Equations
(2.3) represent the exact system (BBGKY—hlerarchy) of N-particle
hard-sphere kinetic equations.
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Next, I want to indicate that system (2.3) admits an analog of
the collision invariants and an H—function.

Collision invariants

For k > 1, ¥(1,...,k) measurable and P( ) e Co one has
(24) / (P(k+1))¢(1 L k)d(1)---d(k) =0
for all ¥(1,.. .,lo) of the form
k
(2.5) (1 H [Bi(re, - 7+ (Cin, ) + Ciaf]
where, for i = 1 ., k, h; are arbitrary measurable functions, C;; are

constant vectors and C’zz are scalar constants. Y are generahzatlons
of Boltzmann’s collison invariants.

The Lzapunov functionals — An analog of the H-theorem

For nonnegative. solutlons ) of (2.3) and for 1 < k<N, I
consider

. k t
(2.6) Ta(t) = / PPlog P d(1) -+ d(k) + 3 / I¥(s) ds.
. ’ ; i=1 Y0
The functions I¥(t) are defined by

(N — k)a?
-

(PP PO s+ aey ') - =B (riyv) P (1 4 ac w>} ,

2.7) IH(t) = / dedwd(1) - - d(k) e, v; — w)GF x

where the functions G* depend only on P](Vk ). For T'x(t) as given above,
one obtains, for 1 <k < N,

dl'y,
. —_ <
(2.8) S 0.

For k = N T'n(t) becomes the fine—grained entropy Syine.
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In addition, one can completely describe all solutions for which
dl'x(t)/dt = 0. This is done under already assumed symmetry of Py,
which also implies the symmetry of P](\,’c ), for 1 <k<N-—1. One can
show that dT'x(t)/dt = 0 if and only if

(2.9)' | - PP =
a(t,r1, .., ) (Be(tym/2m) > H'exp'(_ﬂk(t)m(ui —w(0)’/2),

where «a(t,ry...,r;) is an arbitrary and symmetric function of its
arguments. In equilibrium, except for a multiplicative constant, o
becomes the k—particle correlation function. Here, 8:(t) and u(t) for
k=1,...,N —1 are arbitrary measurable functions of t¢.

Inequalities (2.8) reflect the fact that the information about the
system available to us in the description on the k—particle level
(k < N) is greatly reduced as compared to the complete information
about the system on the N—particle level.

3. Special cases.

In the case of k = 1, and the closure relation as in the revised
Enskog theory, T';(¢) becomes the H—function found by Resibois [10].
Recently, jointly with G. Stell [9], we considered a class of hard—
sphere kinetic equations (on 1-particle level), called the generalized
Enskog equation (GEE), that follows from the first BBGKY-hierarchy
equation and the closure relation for P{?

(3.1) O PD,1,2) = 6t 1,2) PO, PO, 2).

The Liapunov functional obtained there is precisely T';(t), where it
plays a fundamental role in existence theorems. .
In the case of Grad’s limit, T1(t) reduces to Boltzmann’s
H—function. In fact, in this case I} (¢) = 0. ' '
Another interesting case in which all I*(t) = 0 is provided in
the limit N — oo, ¢ — 0, with Ne? bounded, and for solutions in the
factorized form (see [3], pp. 53-54]). In the just describe case the
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Liapunov functionals T4 (¢) (1 < k < o) reduce to
(3.2) Ti(t) = /p(k) log P) d(1) .- - d(k),

where P(*) = limy_,, P{*’, in some sense to be specified. This result
fully agrees with Grad’s observation [4] that, for symmetric functions
P®), the informational entropy gives the correct minimum only for
P®) in the factorized form, in which case, it is really Boltzmann’s
H-function that covers the situation.

For simplicity, I have considered here only one—component gas
of hard—spheres. The results can be extended to multicomponent and
chemically reacting fluids.
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