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THERMAL CREEP PROBLEMS
BY THE DISCRETE BOLTZMANN EQUATION

L. PREZIOSI (Torino)

This paper deals with an initial-boundary value problem for the
discrete Boltzmann equation confined between two moving walls at
different temperature. A model suitable for the quantitative analysis of
the initial boundary value problem and the relative existence theorem
are given.

1. Statement of the Initial-Boundary Value Problem.

One of the classical problems of the kinetic theory is the analysis
of the thermal creep between walls at different temperature. Such
a problem has been studied by means of linear and some nonlinear
models of the continuous Boltzmann equation [1]. The analysis can
be developed, as we shall see, with somewhat interesting physical
results by the discrete Boltzmann equation, a nonlinear model of the
discrete kinetic theory of gases [2].

The discrete Boltzmann equation is a non linear model of the
kinetic theory of gases such that the particles can only attain to a
finite number of velocities v; € IR?, i =1,...,n. The aim of the model
~is then to describe the behaviour of the gas through the time-space
evolution of the number densities N;(¢,x) of the particles travelling
with velocity v;, i.e. to solve, with suitable initial and boundary
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conditions, the hyperbolic semilinear system of equations

(1.1) ’%]%qui-vai.—_Ji[N] . iel={l,...,n)

where N = (N1,...,Np), N; >0 and J;[N] represents the non linear
collision operator whlch can be split into the sum of the contrlbutlons
of the binary and triple collisions

(1.2) JiIN] = J[N] + J?N]
where the two contributions may in general be expressed as

= Y AE (NN, ~ N;N;)
jkeel ' .

BINl= > ﬁf}n(NkNeN —NhNN)
hjktmel

Let now a monoatomic gas occupy the strip
Q={x=(e,5,2)€R® : 0<y<£t}

between two rigid walls and assume that the wall y = 0 (respectively,
y = ¢) has temperature and velocity

(1.3) Two(t) and w,(t)i (respectively Ty1(t) and wi(t)i) .

In order to solve an initial-boundary value problem, Eq.(1.1) has
to be joined with the initial condition

(1.4) | N(t = 0,2) = N, (z)

and proper boundary conditions. In order to specify these conditions
we will need some notation

DEFINITION 1.1. The set of indexes corresponding to the allowed
velocities can be partitioned as I = I~ U I+ where

IT={i€el:v;-j<0} , I"T={jel:v;-j>0}.
The set I can be also partitioned in 27 sets (27 < n)

Lh={iel:v;-j=u}.
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Thus a particle with velocity with the index in I~ is hitting the
wall if it is located at the lower wall y =0, but is reflecting if y = ¢.
Trivially the opposite is true for I+

In order to have a satisfactory reflection law, according to [4],
‘the discrete velocity model of the Boltzmann equation should satisfy
the following conditions

i) The model is characterized by at least two velocity moduli in
order to describe phenomena with temperature variation,;

ii) The model can be suitably oriented to avoid grazing directions;

iii) The model has sufficient velocity directions so that any particle
can be reflected specularly;

iv) The number of velocities and directions is such that the space of
collision invariants has the correct dimension in order to have
a unique description of the Maxwellian state in terms of the
macroscopic observables of the system.

Keeping this in mind, one can characterize, according to [3], the
gas—surface interaction on the wall y = 0 as

(1.5) Vi€ I, viyN; = Y Byjloy|N;.
JjeI-

If one assumes that a fraction « of the particles are reflected
diffusively and the fraction 1 — « is reflected specularly, Eq.(1.5) can
be re-written as

(1.6) Vi€ I, vy Ni = (1= a)Nirviy + aBP (Tuo,wo) > Jogy N
JeI-

where, from the mechanism of specular reflection, the index ¢ is such
that vy = v; — 2v;,j and the diffusive re-emission coefficients are

Viy Ng(t, 0)
Z vkyNk(t7 0)

kel+

(L7) BP(t) =

where Nj, , k € It are the densities in Maxwellian equilibrium with
temperature Ty, and -z—component of the drift velocity equal to w,.
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2. The Thermal Creep Problem: Solution of the Initial-
Boundary Value Problem

A mathematical model which satisfies the conditions stated in the
previous section is the discrete Boltzmann equation with 6 velomty
directions in the plane

(2.1) er = cos[(2k + 1!)%]i + sin[(2k + l)z]j, k=1,...,6

6
and two velocity moduli ¢ and 2c.

The allowed velocities v; , i =1,...,12 are then given by

{cei if ¢ is odd
V; =

(2.2) 2ce; ifiis even .

After analysing the collisional scheme, one can write the following
kinetic equations (i = 1,...,12)

a +2 0 . i+ 2
s Hec os( )55+081n(TW)5§]N

5t

2 .
= §CS(Ni+2N£+s + NiyaNiy10 — 2N;Nije)+

(2.3q)
VT
+ —Q_CS[N£+6(N1'+3 + Nig11) — Ni(Nigs + Nipo)]+
> ———=¢S%?(N; 42 NiysNig10 — NiNipaNiyg)
4\/— 1 14 H
if 7 is odd, and
[gt + 2¢ os( r)% + 20sin(z —g 17r-)§3;]N2 =
4
. :é‘CS(Ni+2N£+8 + NigaNip10 — 2N;Niye)+
2.3b '
(2.3b) Y
+—2—CS[ Nit10Nig1 + NigaNigo — Ni(Nits + Nigr)]+
2 —=cS /2(N1+2Nz+6Nz+10 - NNz+4Nz+8)
V-

if 7 is even. Here S is the cross—sectiohal area of the gas particles
and the index has to be intended modulo 12.
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This problem was solved in [5] for a purely diffusive reflection
law at the boundaries, i.e. a(t) =1 in Eq.(1.6). We will now only
particularize the results of [6] to the present case, without specifying

the form of the transition probability densities in (1.5).

Consider the initial-boundary value problem (1.1), (1.4), (1.5);
By a (local) mild solution we mean a function N(¢,z) such that for

some 7" > 0, N € C([0,T*] x [0,4];IR™), N(¢, -) € X(t) V¢ <T* and
(4.1) N() =U(t,0)N, + /tU(t,rﬂ)J[N(r)] dr , Vit E [0,7™] |
. 0 |

where
X(s) = {® €C([0,4;R") :

vy ®i(0) = 3 Jogy By (5)8;0) if i € I*
JEI-

iy |Bi(6) = D vy Bij(s)®;(8) if i€ I7} .

jer+ ’
The operator U(¢,s) in (4.1) is given by
U(t,5)8i(y) = @iy —vilt = 5) if (L,y) € Di(s)
where |
{(t,y) €[5,s+T]1x[0,€] : y > vy (t — 5)} ifierlt
D;(s) = {

{(ty) €els;s+T]x[0,8] :y<L+uwvy(t—s)} ifiel”

and T = £ and by
2c

> I:),J:lez‘j (t - v_y~> @(uy)  ifiel”

) = J e i

Ut,s)®i(y) = < Viy L—y\ . ., cp e -
> lvileij bty )W) el

iy

if (t,v) ¢ Di(s), where

Viy [—y——(t—-s)] ifierl*
v = Viy
Dol [ ——a| e (1= %) et
3V | vy | o1y :
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Furthermore we define

Vi .

r= max |- ZBij(t)gll
J,b U | T
t€[0,T*] 1€ly

where j € 7~ if v, > 0 and viceversa. The following theorem holds.

THEOREM. If the transition probability densities B;;(t) are
continuous. in time and N, € X(0), then there exists a unique local
mild solution to the initial-boundary value problem (1.1), (1.4), (1.5).
This solution is positive if N, is positive. Moreover if B;;(t) are C! in
t and N, satisfies the compatibility conditions

N -/l). ° . .
viy Ni,(0) = Y f’"[ij(O)Njo(O) + [vjy|Bi; (0) N7, (0)] for i € IT
jer- ¥

viy N1, (0) = > g’f—j[Béj(O)Njo(e) +vjy Bi; (0)N/,(6)] for i € I,
: jer+

then this solution is a classical one. Furthermore if

where v, = 16(2 + V7)(1 + 3r)S and

_ 2
E, = max Ni(z) < V(1 — Mys)

et 3840(1 + 3r)rS5/2M
z€[0,4]

L+1)¢
yezs)

then this solution exists in the interval [ ] where

V(1 = My,)?
3840(1 + 3r)rS*?ME,
log 1 12r
— My,

log

and where [K] stands for the largest integer less or equal than K.
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