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INHOMOGENEOUS DEFORMATIONS AND MOTIONS
OF ELASTIC MATERIALS

K.R. RAJAGOPAL (Pittsburgh)

Unsteady motions are discussed within the context of the linearized
theory of elasticity, the neo-Hookean theory of elasticity and the theory
of interacting continua. In the last case, we discuss unsteady motions
in an isotropic solid infused with a fluid, and a transversely isotropic
solid infused with a fluid. We are able to show that the theory reduces
to one that has a structure similar to that introduced by Biot.

1. Introduction.

We shall discuss several unsteady motions within the context
of linearized elasticity, non-linear elasticity, and non-linearly elastic
solids infused with fluids. The unsteady motions we shall consider
within the realm of linearized elasticity theory are extensions to
elasticity of unsteady solutions to the Navier-Stokes equations in
which the non-linear terms, while individually non-vanishing, are self
cancelling, thereby reducing the Navier-Stokes equations to a set of
linear equations. We extend solutions due to Kelvin (cf. Thompson
[17]), Taylor [16] and others in the Navier-Stokes theory to that for a
linearized elastic material (cf. Rajagopal [12]). Next, we discuss within
the framework of the neo-Hookean and Mooney-Rivlin theories some
classes of exact solutions (cf. Hayes and Rajagopal [10]). Included
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in this class are the elliptically polarized wave solutions found by
Boulanger and Hayes [6] for neo-Hookean materials. Finally, we
briefly discuss the recent work of Rajagopal and Tao [13] on the
propagation of waves in solids infused with a fluid, undergoing large
deformations, where it is shown that a Biot like theory is imbedded
in a more general setting.

All the unsteady motions that are considered are inhomogeneous,
and thus not possible in all isotropic elastic materials (cf. Ericksen
[8], [9]), and it is for this reason we consider such motions within
the context of special constitutive theories, say the neo-Hookean or
Mooney-Rivlin theory.

2. New unsteady motions in linearized elasticity.

The equations of motion for isotropic linearized elastic materials
take the form '

| . 0?
(1) V2 + (A + p)V(diva) = p?%—l;,

where ) and p are the Lame constants. Equation (1) admits solutions
of the form (cf. Rajagopal [3])

(2) u = ReX A, exp(an=) exp(Bry) exp(rt),

(3) v = ReX B, exp(an=) exp(Bry) exp(1t),

where A,, B, o, and 8, are complex constants.

a. Standing waves in an array of square or rectangular cells:

. We notice that (1) admits solutions of the form

(4) ' u = sin mz cos nye~*,

(5) v = cos mz sin nye ¥,
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provided
(6) —{u(m® +n®)+ (A + p)(m + n)m} = pa?,
(7) ~{u(m® +n%) + (A + p)n(m + n)} = pa?,

If A+ pu+#0, then (6) and (7) imply that m = n or m = —n. If
m = n, then a simple computation gives

—2m2(X + 2u)

(8) o? = p

If p > 0 and the stored energy is positive definite, which implies
that, 4 >0 and 3X + 24 > 0, it follows that « is imaginary. Thus, only
oscillating solutions are possible. This in marked contrast to the result
established by Taylor [16] within the context of the Navier-Stokes
theory, where only decaying of the array of vortices is possible. We
also notice that det F # 1, and thus the motion is not isochoric. If
m = —n, then

2 _ THi9m2
(9) af = 9(2 ),

and once again only oscillatory solutions are possible. In this case it
is easy to verify that diva = 0.

Rajagopal [12] has shown that these results also hold in the case
of a transversely isotropic linearized elastic solid, as also in the case
of an infinitesimal deformation superposed on a non-linear elastic
solid subject to biaxial extension. We shall not discuss these results
here. |

Changing the displacement field slightly to

(10) u = Asinmz cos nye™ %t

(11) v = B cos mz sin nye ™",

leads to similar results, the vortex cells being rectangular instead of
square. ’ ' '
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b. An analogue of Kelvin’s «cats eye» vortex.
The displacement field

(12) u = cos haz sin bye®

(13) v = Bsin haz cos bye™
satisfies equation (1), provided

(14) pla? —b*)A + (A + p)a[Aa — Bb] = pa*A,

(15) p(a® = b3 B + (A + p)b[Aa — Bb] = pa’®B.
Thus, if A+ 4 # 0, then Aa = Bb or aB = bA. if aA = bB, then

- 2 _ #(‘12 - 62)
(16) of =

A simple computation also verifies that detF # 1. If aB = bA,
then

o () =)
p

(17)

b

and once again the solutioh can oséillate, blow-up or decay with time.

There are several other exact solutions that can be established
for (1) and we refer the reader to [12] for the same.

3. Unsteady motions in finite elasticity.

We shall now discuss some unsteady exact solutions which
have been established recently by Hayes and Rajagopal [10] to the
equations of motion of a neo-Hookean material. The Cauchy stress in
a neo-Hookean material is given by

(18) T = -—pl‘i—/lB,

whre B = FFT and F is the deformation gradient.
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Let us consider inhomogeneous motions of the form (cf. Hayes
and Rajagopal [10])

(19) 2= L)X + f(1)Y,
(20) y = g1()X + g2(8)Y,
(21) | z:Z+a£2-2-+ﬂ-};+7XY,

where (X,Y, Z) and (z, y, z) denote the reference and current coordinates
of a particle, respectively.

Since the material is incopressible, it can undergo only isochoric
motion, and thus

(22) detF = 1.

For the motion under consideration F has the matrix represen-
tation

| fi [z 0
az+vy BY+vX 1

and thus (22) implies that
(24) J192 = fog1 = 1.

It can be shown that (cf. Hayes and Rajagopal [10]) the motion
is an unsteady isochoric plane motion superposed on a finite isochoric
anti-plane strain.

A simple calculation shows that the balance of linear momentum
reduces to

Op Op

(25) - Yt gy -

OB [ (@ X +7Y)ga + (YX + BV )gs] = plX FI +Y f7],

8p 6p

LA (@X +9Y)fa — (BY + YY) fi] = p[X g7 + Y g5,

(26) fz + ==
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0
(27) u(f192 = fagr)(a+ ) — 52 = 0.
If follows that we need to satisfy
(28) Vot 992 — 41 — 9591 = 0.

Thus, all we need to ensure is that the functions fi, f2, g1,
g2 satisfy equations (24) and (28), which gives us a great deal of
flexibility in choosing the class of allowable motions.

a. Finite amplitude elliptically polarized waves superposed on
static inhomogeneous extension:

Let

(29) Fi(t) = cos 8(t), fa(t) = (%) sin 6(t)

(30) | g1(t) = — (—g) sin 6(t), g2(t) = cosb(t),

where 6(t) = wt +¢, w and ¢ being constants. It is easy to verify
that both (24) and (28) are met and hence (29), (30) is an allowable
motion. Thus

(31) r =X cosf(t) + %Y sin (),

(32) y = ——C~X sinf(t) + Y cos 0(t),
X? Y2

(33) z=Z+“2 +§2—+7XY.

This immediately implies that
(34) =+ 55
and

(35) T = —w‘e,
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(36) j = —w?y.

Equation (34) implies that particles which lie on the elliptic
cylinders z%/C? + y?/D? =constant remain on these elliptic cylinders.
Moreover, we see from (35) and (36) that the particles oscillate
harmonically along these ellipses. The motion (29), (30) is a
generalization of the motion studied by Boulanger and Hayes [6] in
that the body is subjected to a static inhomogeneous deformation
along the z-direction. |

b. Unsteady motion along hyperbolas superposed on inhomoge-
neous extension: ' '

Consider the motion

(37) ¢ = X cos hf(t) + (%) Y sin h6(1),
D, .
(38) y= 5X sin h(t) + Y cos hO(t),
2 2
S Lo

where 6 = wt + ¢ once again C, D, w and ¢ are constants. The motion
(37)-(39) satisfies (24) and (28), in the absence of body forces, and is
hence possible in a neo-Hookean material. It is easy to verify that

X2 Y2 B (C2 y2

40) T DT T D
and
(41) i =wz, §j=uwly.

Thus, by virtue of (39) particles on hyperbolic cylinders #2/C? —
y?/D? =constant remain on these cylinders.

c. Arbitrary motion along rectangular hyperbolas:
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Consider the case
(42) () =g2() = L+ Y2, folt) = u (1) = f(2),

where f(t) is any arbitrary twice differentiable function of ¢t. We find
that the choice (42) automatically satisfies (24) and (28) and hence
the motion corresponding to the choice (42) is possible, in the absence
of body forces, in a neo Hookean material. It is easy to verify that

(43) X2 -V =2%—y?

and thus particles on hyperbolic cylinders X? — Y2 =constant remain
on these cylinders. The interesting feature is that these particles can
move in a totally arbitrary manner as the choice of the function f(t)
is left to us.

Several other unsteady motions of the form (19)-(21) are discussed
by Hayes and Rajagopal [10].

4. Wave propagation in solids infused with fluids.

Recently, there has been considerable interest in the study of
solids infused with fluids that are undergoing large deformations.
An up-to-date discussion of these efforts can be found in the review
article by Rajagopal and Wineman [14]. However, much if not all this
effort has been directed towards the study of steady problems. Even
there, problems present daunting obstacles with regard to proper
choices for the constitutive expressions and boundary conditions.
The issues are all the more complicated when we consider unsteady
motions of solids infused with fluids. Tao, Rajagopal and Wineman
[14] have recently presented a theory, within the context of the theory
of interacting continua, for the study of diffusing singular surfaces
in a solid infused with a fluid. During the mid-nineteen hundreds,
Biot [2], [3], [4], [5] developed a theory for the study of elastic solids
infused with fluids. Rajagopal and Tao [13] have used the theory
of interacting continua to develop a method for studying unsteady
motions of solid infused with fluids, which can be reduced to the
theory proposed by Biot by making appropriate assumptions. Here,
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we shall discuss wave propagations within the context of the theory
proposed by Rajagopal and Tao [13].

The theory of interacting continua assumes that each point
in space in the mixture, a particle belonging to each constituent
that makes up the mixture is present. The kinematical variables
associated with the motion of each constituent, the basic balance
laws for each constituent and constitutive assumptions which are
necessary for each constituent are postulated (cf. Atkins and Craine
[1], Bowen [7], Truesdell [18], [19]). Here we shall not discuss any of
these details, but we shall only document the final equations which
govern unsteady motions in solids infused with fluids. Details of the
same can be found in the paper by Rajagopal and Tao [13].

Let V and U denote the displacement of the fluid and solid,
respectively. Let us also suppose that the specific Helmhotz free
energy for the mixture, which we shall denote hy A is given by

(44) A= Alpy,I,11,111,0,8),

where p; is the density of the fluid, ¢ is the temperature, 3 is the
porosity of the solid, and

I =1rB,

[(trB)? — trB?],

DO =

(45) I =
IIT = det B,

and B is the Cauchy-Green tensor defined through B = FFT, F
being the deformation gradient. Then, using standard arguments in
continuum mechanics, we can obtain the constitutive representations
for the partial stress for the solid T, the partial stress for the fluid T 7
and the interaction terms I (cf. Rajagopal and Tao [13]). If we make
the assumptions that the solid in the reference state has constant
porosity 3, the fluid is compressible, the velocities and accelerations
of both the solid and fluid are «small» in some sense, the virtual
mass tensor is isotropic and the partial stress tensors for the solid
and fluid have a special form (cf. Rajagopal and Tao [13]), we can
show that the balance of linear momentum for the two constituents
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reduce to
02U; 0%V,
[pso + (pso + pro) Hol 75 8t2 ~ (pso + Pro) Ho—7rg 0
oU;  0V; _
1
(ﬁ1 — o+ §ﬂ2> exk,i + (01 + 71) Vi ki,
9?2V, 0%V;
[p10 + (pso + pro)Hol 55 = (pso + pro) Hog
47
( ) oU; 0V,
a5 ot = (a1 + 71)€ng,i + (ag + 72)Vk,ki.

Here 8i, 83, o1, 71 are constants, e is the symmetric part of the
displacement gradient VU, b is the drag coefficient and Hy = Hy1 is
the virtual mass tensor, p,o and p;o are the density of the solid and
the fluids in their reference configurations, respectively. We notice
‘that the equations have the same structure as Biot’s equation (cf.
Biot [4]) and we can have two distinct dilational wave speeds.

If the constituents of the mixture are incompressible, then we
have to satisfy a volume additivity constraint (cf. Mills [11]). In this
case Rajagopal and Tao [13] find that only one dilatational wave
speed is possible, unlike two dilatational wave speeds in the case of
a mixture of compressible constituents.

These results can also be extended to the case of an anisotropic
solid infused with a fluid. Rajagopal and Tao [13] study unsteady
motions of a transversely isotropic solid infused with a fluid. In this
case, the specific Helmholtz free energy has the form

(48) A:A(pf,I,II,III,E33,E123+E§3,9,,3),
where
(49) zJ— (szFkJ 5)

Under assumptions similar to those discussed earlier in the case
of unsteady motions of an isotropic solid infused with a fluid, we
can derive the appropriate approximate form of the balance of linear
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momentum. We shall not discuss the details here but refer the reader
to [13] for the same.

Rajagopal and Tao [13] study the propogation of transverse plane
waves, longitudinal waves and spherical waves which are considered
as disturbances on the state of finite triaxial extension. This then
allows the possibility to study the effect of finite deformation on
the propogation of these unsteady motions. Rajagopal and Tao [13]
consider motions of the form

X1 = Mzy + Uy (a, t),
(50) X2 = dozg + Us(ap, 1),

X3 = Azz3 + Us(zg, ),

where ); are constants and U; denote the perturbances to the
state of triaxial extension. While it is customary to express the
coordinates of the particle in the deformed configuration z; in terms
of the coordinates of the particle in the reference configuration X;,
Rajagopal and Tao [6] choose to express the coordinate X; in terms
of z; for ease of computation.

In the case of transverse plane waves Rajagopal and Tao [6]
assume

(51) U=Ues +Uszes, v="Ve + Vsey,

where

(52) Ui(zx,t) = Upgelxos=wit) no sum on k,
(53) Vi(2p,t) = Vioe!™2=st)  no sum on &,

while in the case of longitudinal waves
(54) U="Ues, v="Ve;s,
with

(55) U = erz'(lxa—wt),
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(56) V = Vpelllma—uwt),

~ In the case of spherical waves

(57) U="Ue,, v =ve,,
where
(58) U = U (1 ir- w"“))
Or .
g (1,
Y2 2 ir—wut)
(55) V—%'Gr ‘(re )

In all the above cases they show that such waves of the assumed
form are possible.
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